
HPX - The C++ Standard Library for Parallelism and
Concurrency
Hartmut Kaiser1, Patrick Diehl1, Adrian S. Lemoine6, Bryce Adelstein
Lelbach5, Parsa Amini1, Agustín Berge6, John Biddiscombe4, Steven
R. Brandt1, Nikunj Gupta3, Thomas Heller2, Kevin Huck8, Zahra
Khatami7, Alireza Kheirkhahan1, Auriane Reverdell4, Shahrzad
Shirzad1, Mikael Simberg4, Bibek Wagle1, Weile Wei1, and Tianyi
Zhang6

1 Center for Computation & Technology, Louisiana State University, LA, Baton Rouge, United
States of America 2 Exasol, Erlangen, Germany 3 Indian Institute of Technology, Roorkee, India 4
Swiss National Supercomputing Centre, Lugano, Switzerland 5 NVIDIA, CA, Santa Clara, United
States of America 6 STE||AR Group 7 Oracle, CA, Redwood City, United States of America 8
Oregon Advanced Computing Institute for Science and Society (OACISS), University of Oregon,
OR, Eugene, United States of America

DOI: 10.21105/joss.02352

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @bhatele
• @davidbeckingsale

Submitted: 12 June 2020
Published: 02 September 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

The new challenges presented by exascale system architectures have resulted in difficulty
achieving the desired scalability using traditional distributed-memory runtimes. Asynchronous
many-task systems (AMT) are based on a new paradigm showing promise in addressing these
challenges, providing application developers with a productive and performant approach to
programming on next generation systems.
HPX is a C++ Library for concurrency and parallelism that is developed by The STE||AR
Group, an international group of collaborators working in the field of distributed and parallel
programming (Heller, Diehl, Byerly, Biddiscombe, & Kaiser, 2017; Kaiser et al., n.d.; Tabbal,
Anderson, Brodowicz, Kaiser, & Sterling, 2011). It is a runtime system written using modern
C++ techniques that are linked as part of an application. HPX exposes extended services
and functionalities supporting the implementation of parallel, concurrent, and distributed
capabilities for applications in any domain; it has been used in scientific computing, gaming,
finances, data mining, and other fields.
The HPX AMT runtime system attempts to solve some problems the community is facing when
it comes to creating scalable parallel applications that expose excellent parallel efficiency and a
high resource utilization. First, it exposes a C++ standards conforming API that unifies syntax
and semantics for local and remote operations. This significantly simplifies writing codes
that strive to effectively utilize different types of available parallelism in today’s machines
in a coordinated way (i.e., on-node, off-node, and accelerator-based parallelism). Second,
HPX implements an asynchronous C++ standard programming model that has the emergent
property of semi-automatic parallelization of the user’s code. The provided API (especially
when used in conjunction with the new C++20 co_await keyword (Standard ISO/IEC,
2020)) enables intrinsic overlap of computation and communication, prefers moving work to
data over moving data to work, and exposes minimal overheads from its lightweight threading
subsystem, ensuring efficient fine-grained parallelization and minimal-overhead synchronization
and context switching. This programming model natively ensures high-system utilization and
perfect scalability.

Kaiser et al., (2020). HPX - The C++ Standard Library for Parallelism and Concurrency. Journal of Open Source Software, 5(53), 2352.
https://doi.org/10.21105/joss.02352

1

https://doi.org/10.21105/joss.02352
https://github.com/openjournals/joss-reviews/issues/2352
https://github.com/STEllAR-GROUP/hpx
https://doi.org/10.6084/m9.figshare.12907034
http://danielskatz.org/
https://github.com/bhatele
https://github.com/davidbeckingsale
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02352

A detailed comparison of HPX with various other AMTs is given in (Thoman et al., 2018).
Some notable AMT solutions are: Uintah (Germain, McCorquodale, Parker, & Johnson, 2000),
Chapel (Chamberlain, Callahan, & Zima, 2007), Charm++ (Kale & Krishnan, 1993), Kokkos
(Edwards, Trott, & Sunderland, 2014), Legion (Bauer, Treichler, Slaughter, & Aiken, 2012),
and PaRSEC (Bosilca et al., 2013). Note that we only refer to distributed memory solutions,
since this is an important feature for scientific applications to run large scale simulations. The
major showpiece of HPX compared to the mentioned distributed AMTs is its future-proof
C++ standards conforming API and the exposed asynchronous programming model.
HPX’s main goal is to improve efficiency and scalability of parallel applications by increasing re-
source utilization and reducing synchronization overheads through providing an asynchronous
API and employing adaptive scheduling. The consequent use of Futures intrinsically enables
overlap of computation and communication and constraint-based synchronization. HPX is
able to maintain a balanced load among all the available resources resulting in significantly
reducing processor starvation and effective latencies while controlling overheads. HPX fully
conforms to the C++ ISO standards and implements the standardized concurrency mecha-
nisms and parallelism facilities. Further, HPX extends those facilities to distributed use cases,
thus enabling syntactic and semantic equivalence of local and remote operations on the API
level. HPX uses the concept of C++ Futures to transform sequential algorithms into wait-free
asynchronous executions. The use of Futurization enables the automatic creation of dynamic
data flow execution trees of potentially millions of lightweight HPX tasks executed in the
proper order. HPX also provides a work-stealing task scheduler that takes care of fine-grained
parallelizations and automatic load balancing. Furthermore, HPX implements functionalities
proposed as part of the ongoing C++ standardization process.

Application

Operating System

C++2z Concurrency/Parallelism APIs

Threading Subsystem

Active Global Address

Space (AGAS)

Local Control Objects

(LCOs)

Parcel Transport Layer

(Networking)

API

OS

Performance Counter

Framework

P
o

li
cy

 E
n

g
in

e
/P

o
li

ci
e

s

Figure 1: Sketch of HPX’s architecture with all the components and their interactions.

Figure 1 sketches HPX’s architecture. The components of HPX and their references are listed
below:
Threading Subsystem (Kaiser, Brodowicz, & Sterling, 2009) The thread manager manages
the light-weight user level threads created by HPX. These light-weight threads have extremely
short context switching times, resulting in reduced latencies even for very short operations.
This also ensures reduced synchronization overheads for coordinating execution between dif-
ferent threads. HPX provides a set of scheduling policies that enable the user to flexibly
customize the execution of HPX threads. Work-stealing and work-sharing policies ensure au-
tomatic local load balancing of tasks, which is important for achieving high system utilization
and good scalability of the user’s code.

Kaiser et al., (2020). HPX - The C++ Standard Library for Parallelism and Concurrency. Journal of Open Source Software, 5(53), 2352.
https://doi.org/10.21105/joss.02352

2

https://doi.org/10.21105/joss.02352

Active Global Address Space (AGAS) (Amini & Kaiser, 2019; Kaiser, Heller, Adelstein-
Lelbach, Serio, & Fey, 2014) To support distributed objects, HPX supports a component for
resolving global addresses that extends the Partitioned Global Address Space (PGAS) model,
enabling dynamic runtime-based resource allocation and data placement. This layer enables
HPX to expose a uniform API for local and remote execution. Unlike PGAS, AGAS provides
the user with the ability to transparently move global objects in between nodes of a distributed
computer system without changing the object’s global address. This capability is fundamental
for supporting load balancing via object migration.
Parcel Transport Layer (Biddiscombe, Heller, Bikineev, & Kaiser, 2017; Kaiser et al., 2009)
This component is an active-message networking layer. The parcelport leverages AGAS in
order to deliver messages to and to launch functions on global objects regardless of their
current placement in a distributed system. Additionally, its asynchronous protocol enables the
parcelport to implicitly overlap communication and computation. The parcelport is modular
to support multiple communication library backends. By default, HPX supports TCP/IP,
Message Passing Interface (MPI), and libfabric (Daiß et al., 2019).
Performance counters (Grubel, 2016) HPX provides its users with a uniform suite of globally
accessible performance counters to monitor system metrics in-situ. These counters have their
names registered with AGAS, which enables the users to easily query for different metrics
at runtime. Additionally, HPX provides an API for users to create their own application-
specific counters to gather information customized to their own application. These user-
defined counters are exposed through the same interface as their predefined counterparts. By
default, HPX provides performance counters for its own components, such as networking,
AGAS operations, thread scheduling, and various statistics.
Policy Engine/Policies (Huck et al., 2015; Khatami, Troska, Kaiser, Ramanujam, & Serio,
2017; Laberge et al., 2019) Often, modern applications must adapt to runtime environments
to ensure acceptable performance. Autonomic Performance Environment for Exascale (APEX)
enables this flexibility by measuring HPX tasks, monitoring system utilization, and accepting
user provided policies that are triggered by defined events. In this way, features such as
parcel coalescing (Wagle, Kellar, Serio, & Kaiser, 2018) can adapt to the current phase of an
application or even state of a system.
Accelerator Support HPX has support for several methods of integration with GPUs: HPXCL
(Diehl et al., 2018b; Stumpf et al., 2018) and HPX.Compute (Copik & Kaiser, 2017). HPXCL
provides users the ability to manage GPU kernels through a global object. This enables HPX to
coordinate the launching and synchronization of CPU and GPU code. HPX.Compute (Copik
& Kaiser, 2017) aims to provide a single-source solution to heterogeneity by automatically
generating GPU kernels from C++ code. This enables HPX to launch both CPU and GPU
kernels as dictated by the current state of the system. Support for integrating HPX with
Kokkos (Edwards et al., 2014) is currently being developed. This integration already has added
HPX as an asynchronous backend to Kokkos and will expose Kokkos’ accelerator functionalities
through HPX’s asynchronous APIs in a C++ standards-conforming way.
Local Control Objects (synchronization support facilities) HPX has support for many of
the C++20 primitives, such as hpx::latch, hpx::barrier, and hpx::counting_semaph
ore to synchronize the execution of different threads allowing overlapping computation and
communication. These facilities fully conform to the C++20 standard (Standard ISO/IEC,
2020). For asynchronous computing HPX provides hpx::async and hpx::future; see the
second example in the next section.
Software Resilience HPX supports software-level resilience (Gupta, Mayo, Lemoine, & Kaiser,
2020) through its resiliency API, such as hpx::async_replay and hpx::async_replicate
and its dataflow counterparts hpx::dataflow_replay and hpx::dataflow_replicate.
These APIs are resilient against memory bit flips and other hardware errors. HPX provides an
easy method to port codes to the resilient API by replacing hpx::async or hpx::dataflow
with its resilient API counterparts everywhere in the code without making any other changes.

Kaiser et al., (2020). HPX - The C++ Standard Library for Parallelism and Concurrency. Journal of Open Source Software, 5(53), 2352.
https://doi.org/10.21105/joss.02352

3

https://doi.org/10.21105/joss.02352

C++ Standards conforming API HPX implements all the C++17 parallel algorithms (Stan-
dard ISO/IEC, 2017) and extends those with asynchronous versions. Here, HPX provides the
hpx::execution::seq and hpx::execution::par execution policies, and (as an exten-
sion) their asynchronous equivalents hpx::execution::seq(hpx::execution::task) and
hpx::execution::par(hpx::execution::task) (see the first code example below). HPX
also implements the C++20 concurrency facilities and APIs (Standard ISO/IEC, 2020), such
as hpx::jthread, hpx::latch, hpx::barrier, etc.

Applications

HPX is utilized in a diverse set of applications:

• Scientific computing
– Octo-Tiger (Daiß et al., 2019; Heller et al., 2019; Pfander, Daiß, Marcello, Kaiser,

& Pflüger, 2018), an astrophysics code for stellar mergers.
– libGeoDecomp (Schäfer & Fey, 2008), an auto-parallelizing library to speed up

stencil-code-based computer simulations.
– NLMech (Diehl et al., 2018a), a simulation tool for non-local models, e.g. Peridy-

namics.
– Dynamical Cluster Approximation (DCA++) (Hähner et al., 2020), a high-

performance research software framework to solve quantum many-body problems
with cutting edge quantum cluster algorithms.

• Libraries
– hpxMP (Zhang et al., 2019, 2020) a modern OpenMP implementation leveraging

HPX that supports shared memory multithread programming.
– Kokkos (Carter Edwards, Trott, & Sunderland, 2014), the C++ Performance

Portability Programming EcoSystem.
– Phylanx (Tohid et al., 2018; Wagle et al., 2019) An Asynchronous Distributed

C++ Array Processing Toolkit.

For a updated list of applications, we refer to the corresponding HPX website.

Example code

The following is an example of HPX’s parallel algorithms API using execution policies as
defined in the C++17 standard (Standard ISO/IEC, 2017). HPX implements all the parallel
algorithms defined therein. The parallel algorithms extend the classic STL algorithms by adding
a first argument (called execution policy). The hpx::execution::seq implies sequential
execution while hpx::execution::par will execute the algorithm in parallel. HPX’s parallel
algorithm library API is completely standards conforming.

#include <hpx/hpx.hpp>
#include <iostream>
#include <vector>

int main()
{
std::vector<int> values = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

Kaiser et al., (2020). HPX - The C++ Standard Library for Parallelism and Concurrency. Journal of Open Source Software, 5(53), 2352.
https://doi.org/10.21105/joss.02352

4

https://github.com/STEllAR-GROUP/octotiger
https://github.com/gentryx/libgeodecomp
https://github.com/nonlocalmodels
https://github.com/CompFUSE/DCA
https://github.com/STEllAR-GROUP/hpxMP
https://github.com/kokkos/kokkos
https://github.com/STEllAR-GROUP/phylanx
https://hpx.stellar-group.org/hpx-users/
https://doi.org/10.21105/joss.02352

// Compute the sum in a sequential fashion
int sum1 = hpx::reduce(
hpx::execution::seq, values.begin(), values.end(), 0);
std::cout << sum1 << '\n'; // will print 55

// Compute the sum in a parallel fashion based on a range of values
int sum2 = hpx::ranges::reduce(hpx::execution::par, values, 0);
std::cout << sum2 << '\n'; // will print 55 as well

return 0;
}

Example for the HPX’s concurrency API where the Taylor series for the sin(x) function is
computed. The Taylor series is given by,

sin(x) ≈=

N∑
n=0

(−1)n−1 x2n

(2n)!
.

For the concurrent computation, the interval [0, N] is split in two partitions from [0, N/2]
and [(N/2) + 1, N], and these are computed asynchronously using hpx::async. Note that
each asynchronous function call returns an hpx::future which is needed to synchronize the
collection of the partial results. The future has a get() method that returns the result once
the computation of the Taylor function finished. If the result is not ready yet, the current
thread is suspended until the result is ready. Only if f1 and f2 are ready, the overall result
will be printed to the standard output stream.

#include <hpx/hpx.hpp>
#include <cmath>
#include <iostream>

// Define the partial taylor function
double taylor(size_t begin, size_t end, size_t n, double x)
{
double denom = factorial(2 * n);
double res = 0;
for (size_t i = begin; i != end; ++i)
{
res += std::pow(-1, i - 1) * std::pow(x, 2 * n) / denom;
}
return res;

}

int main()
{
// Compute the Talor series sin(2.0) for 100 iterations
size_t n = 100;

// Launch two concurrent computations of each partial result
hpx::future<double> f1 = hpx::async(taylor, 0, n / 2, n, 2.);
hpx::future<double> f2 = hpx::async(taylor, (n / 2) + 1, n, n, 2.);

// Introduce a barrier to gather the results
double res = f1.get() + f2.get();

Kaiser et al., (2020). HPX - The C++ Standard Library for Parallelism and Concurrency. Journal of Open Source Software, 5(53), 2352.
https://doi.org/10.21105/joss.02352

5

https://doi.org/10.21105/joss.02352

// Print the result
std::cout << "Sin(2.) = " << res << std::endl;

}

Please report any bugs or feature requests on the HPX GitHub page.

Acknowledgments

We would like to acknowledge the National Science Foundation (NSF), the U.S. Department
of Energy (DoE), the Defense Technical Information Center (DTIC), the Defense Advanced
Research Projects Agency (DARPA), the Center for Computation and Technology (CCT) at
Louisiana State University (LSU), the Swiss National Supercomputing Centre (CSCS), the
Department of Computer Science 3 - Computer Architecture at the University of Erlangen
Nuremberg who fund and support our work, and the Heterogeneous System Architecture
(HSA) Foundation.
We would also like to thank the following organizations for granting us allocations of their com-
pute resources: LSU HPC, Louisiana Optical Network Iniative (LONI), the Extreme Science
and Engineering Discovery Environment (XSEDE), the National Energy Research Scientific
Computing Center (NERSC), the Oak Ridge Leadership Computing Facility (OLCF), Swiss
National Supercomputing Centre (CSCS/ETHZ), the Juelich Supercomputing Centre (JSC),
and the Gauss Center for Supercomputing.
At the time the paper was written, HPX was directly funded by the following grants:

• The National Science Foundation through awards 1339782 (STORM) and 1737785
(Phylanx).

• The Department of Energy (DoE) through the awards DE-AC52-06NA25396 (FLeCSI)
DE-NA0003525 (Resilience), and DE-AC05-00OR22725 (DCA++).

• The Defense Technical Information Center (DTIC) under contract FA8075-14-D-
0002/0007.

• The Bavarian Research Foundation (Bayerische Forschungsstiftung) through the grant
AZ-987-11.

• The European Commission’s Horizon 2020 programme through the grant H2020-
EU.1.2.2. 671603 (AllScale).

For a updated list of previous and current funding, we refer to the corresponding HPX website.

References

Amini, P., & Kaiser, H. (2019). Assessing the Performance Impact of using an Active Global
Address Space in HPX: A Case for AGAS. In 2019 IEEE/ACM Third Annual Workshop
on Emerging Parallel and Distributed Runtime Systems and Middleware (IPDRM) (pp.
26–33). doi:10.1109/ipdrm49579.2019.00008

Bauer, M., Treichler, S., Slaughter, E., & Aiken, A. (2012). Legion: Expressing locality and
independence with logical regions. In SC’12: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis (pp. 1–11). IEEE.
doi:10.1109/SC.2012.71

Kaiser et al., (2020). HPX - The C++ Standard Library for Parallelism and Concurrency. Journal of Open Source Software, 5(53), 2352.
https://doi.org/10.21105/joss.02352

6

https://github.com/STEllAR-GROUP/hpx
http://hpx.stellar-group.org/funding-acknowledgements/
https://doi.org/10.1109/ipdrm49579.2019.00008
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.21105/joss.02352

Biddiscombe, J., Heller, T., Bikineev, A., & Kaiser, H. (2017). Zero Copy Serialization using
RMA in the Distributed Task-Based HPX Runtime. In 14th International Conference on
Applied Computing. IADIS, International Association for Development of the Information
Society.

Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Hérault, T., & Dongarra, J. J. (2013).
Parsec: Exploiting heterogeneity to enhance scalability. Computing in Science & Engi-
neering, 15(6), 36–45. doi:10.1109/MCSE.2013.98

Carter Edwards, H., Trott, C. R., & Sunderland, D. (2014). Kokkos. J. Parallel Distrib.
Comput., 74(12), 3202?3216. doi:10.1016/j.jpdc.2014.07.003

Chamberlain, B. L., Callahan, D., & Zima, H. P. (2007). Parallel programmability and the
chapel language. The International Journal of High Performance Computing Applications,
21(3), 291–312. doi:10.1177/1094342007078442

Copik, M., & Kaiser, H. (2017). Using SYCL as an implementation framework for hpx.
Compute. In Proceedings of the 5th International Workshop on OpenCL (pp. 1–7).
doi:10.1145/3078155.3078187

Daiß, G., Amini, P., Biddiscombe, J., Diehl, P., Frank, J., Huck, K., Kaiser, H., et al. (2019).
From Piz-Daint to the Stars: Simulation of Stellar Mergers using High-level abstractions.
In Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis (pp. 1–37). doi:10.1177/1094342018819744

Diehl, P., Jha, P. K., Kaiser, H., Lipton, R., & Levesque, M. (2018a). Implementation of
Peridynamics utilizing HPX–the C++ Standard Library for Parallelism and Concurrency.
arXiv preprint arXiv:1806.06917.

Diehl, P., Seshadri, M., Heller, T., & Kaiser, H. (2018b). Integration of CUDA Processing
within the C++ Library for Parallelism and Concurrency (HPX). In 2018 IEEE/ACM 4th
International Workshop on Extreme Scale Programming Models and Middleware (ESPM2),
pages=19–28. IEEE. doi:10.1109/espm2.2018.00006

Edwards, H. C., Trott, C. R., & Sunderland, D. (2014). Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns. Journal of Parallel and
Distributed Computing, 74(12), 3202–3216. doi:10.1016/j.jpdc.2014.07.003

Germain, J. D. de S., McCorquodale, J., Parker, S. G., & Johnson, C. R. (2000). Uintah:
A massively parallel problem solving environment. In Proceedings the Ninth International
Symposium on High-Performance Distributed Computing (pp. 33–41). IEEE. doi:10.
1109/HPDC.2000.868632

Grubel, P. A. (2016). Dynamic Adaptation in HPX: A Task-based Parallel Runtime System
(PhD thesis). New Mexico State University.

Gupta, N., Mayo, J. R., Lemoine, A. S., & Kaiser, H. (2020). Implementing Software Re-
siliency in HPX for Extreme Scale Computing. doi:10.2172/1614897

Hähner, U. R., Alvarez, G., Maier, T. A., Solcà, R., Staar, P., Summers, M. S., & Schulthess,
T. C. (2020). DCA++: A software framework to solve correlated electron problems with
modern quantum cluster methods. Computer Physics Communications, 246, 106709.
doi:10.1016/j.cpc.2019.01.006

Heller, T., Diehl, P., Byerly, Z., Biddiscombe, J., & Kaiser, H. (2017). HPX–An Open Source
C++ Standard Library for Parallelism and Concurrency. Proceedings of OpenSuCo, 5.

Heller, T., Lelbach, B. A., Huck, K. A., Biddiscombe, J., Grubel, P., Koniges, A. E., Kretz,
M., et al. (2019). Harnessing Billions of Tasks for a Scalable Portable Hydrodynamic
Simulation of the Merger of two Stars. The International Journal of High Performance
Computing Applications, 33(4), 699–715. doi:10.1177/1094342018819744

Kaiser et al., (2020). HPX - The C++ Standard Library for Parallelism and Concurrency. Journal of Open Source Software, 5(53), 2352.
https://doi.org/10.21105/joss.02352

7

https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1145/3078155.3078187
https://doi.org/10.1177/1094342018819744
https://doi.org/10.1109/espm2.2018.00006
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1109/HPDC.2000.868632
https://doi.org/10.1109/HPDC.2000.868632
https://doi.org/10.2172/1614897
https://doi.org/10.1016/j.cpc.2019.01.006
https://doi.org/10.1177/1094342018819744
https://doi.org/10.21105/joss.02352

Huck, K. A., Porterfield, A., Chaimov, N., Kaiser, H., Malony, A. D., Sterling, T., & Fowler, R.
(2015). An autonomic performance environment for exascale. Supercomputing Frontiers
and Innovations, 2(3), 49–66. doi:10.14529/jsfi150305

Kaiser, H., Brodowicz, M., & Sterling, T. (2009). ParalleX: An Advanced Parallel Execution
Model for Scaling-impaired Applications. In 2009 International Conference on Parallel
Processing Workshops (pp. 394–401). IEEE. doi:10.1109/icppw.2009.14

Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., & Fey, D. (2014). HPX: A Task based
Programming Model in a Global Address Space. In Proceedings of the 8th International
Conference on Partitioned Global Address Space Programming Models (pp. 1–11).

Kaiser, H., Heller, T., Simberg, M., Berge, A., Biddiscombe, J., Reverdell, A., Huck, K., et
al. (n.d.). HPX: The C++ Standards Library for Parallelism and Concurrency. GitHub
repository. Zenodo. doi:10.5281/zenodo.598202

Kale, L. V., & Krishnan, S. (1993). Charm++ A portable concurrent object oriented sys-
tem based on C++. In Proceedings of the eighth annual conference on Object-oriented
programming systems, languages, and applications (pp. 91–108).

Khatami, Z., Troska, L., Kaiser, H., Ramanujam, J., & Serio, A. (2017). HPX Smart Execu-
tors. In Proceedings of the Third International Workshop on Extreme Scale Programming
Models and Middleware, ESPM2’17. New York, NY, USA: Association for Computing
Machinery. doi:10.1145/3152041.3152084

Laberge, G., Shirzad, S., Diehl, P., Kaiser, H., Prudhomme, S., Lemoine, A. S., & others.
(2019). Scheduling Optimization of Parallel Linear Algebra Algorithms Using Supervised
Learning. In 2019 IEEE/ACM Workshop on Machine Learning in High Performance Com-
puting Environments (MLHPC) (pp. 31–43). IEEE. doi:10.1109/mlhpc49564.2019.00009

Pfander, D., Daiß, G., Marcello, D., Kaiser, H., & Pflüger, D. (2018). Accelerating Octo-
Tiger: Stellar Mergers on Intel Knights Landing with HPX. In Proceedings of the Interna-
tional Workshop on OpenCL (pp. 1–8).

Schäfer, A., & Fey, D. (2008). LibGeoDecomp: A Grid-Enabled Library for Geometric Decom-
position Codes. In Proceedings of the 15th European PVM/MPI Users’ Group Meeting
on Recent Advances in Parallel Virtual Machine and Message Passing Interface (pp. 285–
294). Berlin, Heidelberg: Springer-Verlag. doi:10.1007/978-3-540-87475-1_39

Standard ISO/IEC. (2017). ISO International Standard ISO/IEC 14882:2017(E) - Program-
ming Language C++. Geneva, Switzerland: International Organization for Standardiza-
tion (ISO).

Standard ISO/IEC. (2020). ISO International Standard ISO/IEC 14882:2020(E) - Program-
ming Language C++. [Working draft]. Geneva, Switzerland: International Organization
for Standardization (ISO).

Stumpf, M., Diehl, P., Seshadri, M., Kaiser, H., Heller, T., Howard, D., Biddiscombe, J., et
al. (2018). STEllAR-GROUP/hpxcl: Inital release. Zenodo. doi:10.5281/zenodo.1409043

Tabbal, A., Anderson, M., Brodowicz, M., Kaiser, H., & Sterling, T. (2011). Preliminary
design examination of the ParalleX system from a Software and Hardware Perspective.
ACM SIGMETRICS Performance Evaluation Review, 38(4), 81–87. doi:10.1145/1964218.
1964232

Thoman, P., Dichev, K., Heller, T., Iakymchuk, R., Aguilar, X., Hasanov, K., Gschwandtner,
P., et al. (2018). A Taxonomy of Task-based Parallel Programming Technologies for
High-performance Computing. The Journal of Supercomputing, 74(4), 1422–1434.

Tohid, R., Wagle, B., Shirzad, S., Diehl, P., Serio, A., Kheirkhahan, A., Amini, P., et al.
(2018). Asynchronous Execution of Python Code on Task-Based Runtime Systems. In

Kaiser et al., (2020). HPX - The C++ Standard Library for Parallelism and Concurrency. Journal of Open Source Software, 5(53), 2352.
https://doi.org/10.21105/joss.02352

8

https://doi.org/10.14529/jsfi150305
https://doi.org/10.1109/icppw.2009.14
https://doi.org/10.5281/zenodo.598202
https://doi.org/10.1145/3152041.3152084
https://doi.org/10.1109/mlhpc49564.2019.00009
https://doi.org/10.1007/978-3-540-87475-1_39
https://doi.org/10.5281/zenodo.1409043
https://doi.org/10.1145/1964218.1964232
https://doi.org/10.1145/1964218.1964232
https://doi.org/10.21105/joss.02352

2018 IEEE/ACM 4th International Workshop on Extreme Scale Programming Models and
Middleware (ESPM2) (pp. 37–45). IEEE. doi:10.1109/espm2.2018.00009

Wagle, B., Kellar, S., Serio, A., & Kaiser, H. (2018). Methodology for Adaptive Active
Message Coalescing in Task Based Runtime Systems. In 2018 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW) (pp. 1133–1140). doi:10.
1109/ipdpsw.2018.00173

Wagle, B., Monil, M. A. H., Huck, K., Malony, A. D., Serio, A., & Kaiser, H. (2019). Runtime
Adaptive Task Inlining on Asynchronous Multitasking Runtime Systems. In Proceedings
of the 48th International Conference on Parallel Processing (pp. 1–10). doi:10.1145/
3337821.3337915

Zhang, T., Shirzad, S., Diehl, P., Tohid, R., Wei, W., & Kaiser, H. (2019). An Introduction
to hpxMP: A Modern OpenMP Implementation Leveraging HPX, An Asynchronous Many-
Task System. In Proceedings of the International Workshop on OpenCL (pp. 1–10).

Zhang, T., Shirzad, S., Wagle, B., Lemoine, A. S., Diehl, P., & Kaiser, H. (2020). Supporting
OpenMP 5.0 Tasks in hpxMP–A study of an OpenMP implementation within Task Based
Runtime Systems. arXiv preprint arXiv:2002.07970.

Kaiser et al., (2020). HPX - The C++ Standard Library for Parallelism and Concurrency. Journal of Open Source Software, 5(53), 2352.
https://doi.org/10.21105/joss.02352

9

https://doi.org/10.1109/espm2.2018.00009
https://doi.org/10.1109/ipdpsw.2018.00173
https://doi.org/10.1109/ipdpsw.2018.00173
https://doi.org/10.1145/3337821.3337915
https://doi.org/10.1145/3337821.3337915
https://doi.org/10.21105/joss.02352

	Summary
	Applications
	Example code
	Acknowledgments
	References

