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Summary

The new challenges presented by exascale system architectures have resulted in difficulty
achieving the desired scalability using traditional distributed-memory runtimes. Asynchronous
many-task systems (AMT) are based on a new paradigm showing promise in addressing these
challenges, providing application developers with a productive and performant approach to
programming on next generation systems.
HPX is a C++ Library for concurrency and parallelism that is developed by The STE||AR
Group, an international group of collaborators working in the field of distributed and parallel
programming (Heller, Diehl, Byerly, Biddiscombe, & Kaiser, 2017; Kaiser et al., n.d.; Tabbal,
Anderson, Brodowicz, Kaiser, & Sterling, 2011). It is a runtime system written using modern
C++ techniques that are linked as part of an application. HPX exposes extended services
and functionalities supporting the implementation of parallel, concurrent, and distributed
capabilities for applications in any domain; it has been used in scientific computing, gaming,
finances, data mining, and other fields.
The HPX AMT runtime system attempts to solve some problems the community is facing when
it comes to creating scalable parallel applications that expose excellent parallel efficiency and a
high resource utilization. First, it exposes a C++ standards conforming API that unifies syntax
and semantics for local and remote operations. This significantly simplifies writing codes
that strive to effectively utilize different types of available parallelism in today’s machines
in a coordinated way (i.e., on-node, off-node, and accelerator-based parallelism). Second,
HPX implements an asynchronous C++ standard programming model that has the emergent
property of semi-automatic parallelization of the user’s code. The provided API (especially
when used in conjunction with the new C++20 co_await keyword (Standard ISO/IEC,
2020)) enables intrinsic overlap of computation and communication, prefers moving work to
data over moving data to work, and exposes minimal overheads from its lightweight threading
subsystem, ensuring efficient fine-grained parallelization and minimal-overhead synchronization
and context switching. This programming model natively ensures high-system utilization and
perfect scalability.

Kaiser et al., (2020). HPX - The C++ Standard Library for Parallelism and Concurrency. Journal of Open Source Software, 5(53), 2352.
https://doi.org/10.21105/joss.02352

1

https://doi.org/10.21105/joss.02352
https://github.com/openjournals/joss-reviews/issues/2352
https://github.com/STEllAR-GROUP/hpx
https://doi.org/10.6084/m9.figshare.12907034
http://danielskatz.org/
https://github.com/bhatele
https://github.com/davidbeckingsale
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02352


A detailed comparison of HPX with various other AMTs is given in (Thoman et al., 2018).
Some notable AMT solutions are: Uintah (Germain, McCorquodale, Parker, & Johnson, 2000),
Chapel (Chamberlain, Callahan, & Zima, 2007), Charm++ (Kale & Krishnan, 1993), Kokkos
(Edwards, Trott, & Sunderland, 2014), Legion (Bauer, Treichler, Slaughter, & Aiken, 2012),
and PaRSEC (Bosilca et al., 2013). Note that we only refer to distributed memory solutions,
since this is an important feature for scientific applications to run large scale simulations. The
major showpiece of HPX compared to the mentioned distributed AMTs is its future-proof
C++ standards conforming API and the exposed asynchronous programming model.
HPX’s main goal is to improve efficiency and scalability of parallel applications by increasing re-
source utilization and reducing synchronization overheads through providing an asynchronous
API and employing adaptive scheduling. The consequent use of Futures intrinsically enables
overlap of computation and communication and constraint-based synchronization. HPX is
able to maintain a balanced load among all the available resources resulting in significantly
reducing processor starvation and effective latencies while controlling overheads. HPX fully
conforms to the C++ ISO standards and implements the standardized concurrency mecha-
nisms and parallelism facilities. Further, HPX extends those facilities to distributed use cases,
thus enabling syntactic and semantic equivalence of local and remote operations on the API
level. HPX uses the concept of C++ Futures to transform sequential algorithms into wait-free
asynchronous executions. The use of Futurization enables the automatic creation of dynamic
data flow execution trees of potentially millions of lightweight HPX tasks executed in the
proper order. HPX also provides a work-stealing task scheduler that takes care of fine-grained
parallelizations and automatic load balancing. Furthermore, HPX implements functionalities
proposed as part of the ongoing C++ standardization process.
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Figure 1: Sketch of HPX’s architecture with all the components and their interactions.

Figure 1 sketches HPX’s architecture. The components of HPX and their references are listed
below:
Threading Subsystem (Kaiser, Brodowicz, & Sterling, 2009) The thread manager manages
the light-weight user level threads created by HPX. These light-weight threads have extremely
short context switching times, resulting in reduced latencies even for very short operations.
This also ensures reduced synchronization overheads for coordinating execution between dif-
ferent threads. HPX provides a set of scheduling policies that enable the user to flexibly
customize the execution of HPX threads. Work-stealing and work-sharing policies ensure au-
tomatic local load balancing of tasks, which is important for achieving high system utilization
and good scalability of the user’s code.
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Active Global Address Space (AGAS) (Amini & Kaiser, 2019; Kaiser, Heller, Adelstein-
Lelbach, Serio, & Fey, 2014) To support distributed objects, HPX supports a component for
resolving global addresses that extends the Partitioned Global Address Space (PGAS) model,
enabling dynamic runtime-based resource allocation and data placement. This layer enables
HPX to expose a uniform API for local and remote execution. Unlike PGAS, AGAS provides
the user with the ability to transparently move global objects in between nodes of a distributed
computer system without changing the object’s global address. This capability is fundamental
for supporting load balancing via object migration.
Parcel Transport Layer (Biddiscombe, Heller, Bikineev, & Kaiser, 2017; Kaiser et al., 2009)
This component is an active-message networking layer. The parcelport leverages AGAS in
order to deliver messages to and to launch functions on global objects regardless of their
current placement in a distributed system. Additionally, its asynchronous protocol enables the
parcelport to implicitly overlap communication and computation. The parcelport is modular
to support multiple communication library backends. By default, HPX supports TCP/IP,
Message Passing Interface (MPI), and libfabric (Daiß et al., 2019).
Performance counters (Grubel, 2016) HPX provides its users with a uniform suite of globally
accessible performance counters to monitor system metrics in-situ. These counters have their
names registered with AGAS, which enables the users to easily query for different metrics
at runtime. Additionally, HPX provides an API for users to create their own application-
specific counters to gather information customized to their own application. These user-
defined counters are exposed through the same interface as their predefined counterparts. By
default, HPX provides performance counters for its own components, such as networking,
AGAS operations, thread scheduling, and various statistics.
Policy Engine/Policies (Huck et al., 2015; Khatami, Troska, Kaiser, Ramanujam, & Serio,
2017; Laberge et al., 2019) Often, modern applications must adapt to runtime environments
to ensure acceptable performance. Autonomic Performance Environment for Exascale (APEX)
enables this flexibility by measuring HPX tasks, monitoring system utilization, and accepting
user provided policies that are triggered by defined events. In this way, features such as
parcel coalescing (Wagle, Kellar, Serio, & Kaiser, 2018) can adapt to the current phase of an
application or even state of a system.
Accelerator Support HPX has support for several methods of integration with GPUs: HPXCL
(Diehl et al., 2018b; Stumpf et al., 2018) and HPX.Compute (Copik & Kaiser, 2017). HPXCL
provides users the ability to manage GPU kernels through a global object. This enables HPX to
coordinate the launching and synchronization of CPU and GPU code. HPX.Compute (Copik
& Kaiser, 2017) aims to provide a single-source solution to heterogeneity by automatically
generating GPU kernels from C++ code. This enables HPX to launch both CPU and GPU
kernels as dictated by the current state of the system. Support for integrating HPX with
Kokkos (Edwards et al., 2014) is currently being developed. This integration already has added
HPX as an asynchronous backend to Kokkos and will expose Kokkos’ accelerator functionalities
through HPX’s asynchronous APIs in a C++ standards-conforming way.
Local Control Objects (synchronization support facilities) HPX has support for many of
the C++20 primitives, such as hpx::latch, hpx::barrier, and hpx::counting_semaph
ore to synchronize the execution of different threads allowing overlapping computation and
communication. These facilities fully conform to the C++20 standard (Standard ISO/IEC,
2020). For asynchronous computing HPX provides hpx::async and hpx::future; see the
second example in the next section.
Software Resilience HPX supports software-level resilience (Gupta, Mayo, Lemoine, & Kaiser,
2020) through its resiliency API, such as hpx::async_replay and hpx::async_replicate
and its dataflow counterparts hpx::dataflow_replay and hpx::dataflow_replicate.
These APIs are resilient against memory bit flips and other hardware errors. HPX provides an
easy method to port codes to the resilient API by replacing hpx::async or hpx::dataflow
with its resilient API counterparts everywhere in the code without making any other changes.
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C++ Standards conforming API HPX implements all the C++17 parallel algorithms (Stan-
dard ISO/IEC, 2017) and extends those with asynchronous versions. Here, HPX provides the
hpx::execution::seq and hpx::execution::par execution policies, and (as an exten-
sion) their asynchronous equivalents hpx::execution::seq(hpx::execution::task) and
hpx::execution::par(hpx::execution::task) (see the first code example below). HPX
also implements the C++20 concurrency facilities and APIs (Standard ISO/IEC, 2020), such
as hpx::jthread, hpx::latch, hpx::barrier, etc.

Applications

HPX is utilized in a diverse set of applications:

• Scientific computing
– Octo-Tiger (Daiß et al., 2019; Heller et al., 2019; Pfander, Daiß, Marcello, Kaiser,

& Pflüger, 2018), an astrophysics code for stellar mergers.
– libGeoDecomp (Schäfer & Fey, 2008), an auto-parallelizing library to speed up

stencil-code-based computer simulations.
– NLMech (Diehl et al., 2018a), a simulation tool for non-local models, e.g. Peridy-

namics.
– Dynamical Cluster Approximation (DCA++) (Hähner et al., 2020), a high-

performance research software framework to solve quantum many-body problems
with cutting edge quantum cluster algorithms.

• Libraries
– hpxMP (Zhang et al., 2019, 2020) a modern OpenMP implementation leveraging

HPX that supports shared memory multithread programming.
– Kokkos (Carter Edwards, Trott, & Sunderland, 2014), the C++ Performance

Portability Programming EcoSystem.
– Phylanx (Tohid et al., 2018; Wagle et al., 2019) An Asynchronous Distributed

C++ Array Processing Toolkit.

For a updated list of applications, we refer to the corresponding HPX website.

Example code

The following is an example of HPX’s parallel algorithms API using execution policies as
defined in the C++17 standard (Standard ISO/IEC, 2017). HPX implements all the parallel
algorithms defined therein. The parallel algorithms extend the classic STL algorithms by adding
a first argument (called execution policy). The hpx::execution::seq implies sequential
execution while hpx::execution::par will execute the algorithm in parallel. HPX’s parallel
algorithm library API is completely standards conforming.

#include <hpx/hpx.hpp>
#include <iostream>
#include <vector>

int main()
{
std::vector<int> values = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
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// Compute the sum in a sequential fashion
int sum1 = hpx::reduce(
hpx::execution::seq, values.begin(), values.end(), 0);
std::cout << sum1 << '\n'; // will print 55

// Compute the sum in a parallel fashion based on a range of values
int sum2 = hpx::ranges::reduce(hpx::execution::par, values, 0);
std::cout << sum2 << '\n'; // will print 55 as well

return 0;
}

Example for the HPX’s concurrency API where the Taylor series for the sin(x) function is
computed. The Taylor series is given by,

sin(x) ≈=

N∑
n=0

(−1)n−1 x2n

(2n)!
.

For the concurrent computation, the interval [0, N ] is split in two partitions from [0, N/2]
and [(N/2) + 1, N ], and these are computed asynchronously using hpx::async. Note that
each asynchronous function call returns an hpx::future which is needed to synchronize the
collection of the partial results. The future has a get() method that returns the result once
the computation of the Taylor function finished. If the result is not ready yet, the current
thread is suspended until the result is ready. Only if f1 and f2 are ready, the overall result
will be printed to the standard output stream.

#include <hpx/hpx.hpp>
#include <cmath>
#include <iostream>

// Define the partial taylor function
double taylor(size_t begin, size_t end, size_t n, double x)
{
double denom = factorial(2 * n);
double res = 0;
for (size_t i = begin; i != end; ++i)
{
res += std::pow(-1, i - 1) * std::pow(x, 2 * n) / denom;
}
return res;

}

int main()
{
// Compute the Talor series sin(2.0) for 100 iterations
size_t n = 100;

// Launch two concurrent computations of each partial result
hpx::future<double> f1 = hpx::async(taylor, 0, n / 2, n, 2.);
hpx::future<double> f2 = hpx::async(taylor, (n / 2) + 1, n, n, 2.);

// Introduce a barrier to gather the results
double res = f1.get() + f2.get();

Kaiser et al., (2020). HPX - The C++ Standard Library for Parallelism and Concurrency. Journal of Open Source Software, 5(53), 2352.
https://doi.org/10.21105/joss.02352

5

https://doi.org/10.21105/joss.02352


// Print the result
std::cout << "Sin(2.) = " << res << std::endl;

}

Please report any bugs or feature requests on the HPX GitHub page.
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