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Summary

Nearby young moving groups are kinematically bound systems of stars that are believed to
have formed at the same time. With all member stars having the same age, they provide
snapshots of stellar and planetary evolution. In particular, young (< 800 Myr) stars have
increased levels of activity, seen in both fast rotation periods, large spot modulation, and
increased flare rates (llin, Schmidt, Davenport, & Strassmeier, 2019; Zuckerman, Song, &
Bessell, 2004). Flare rates and energies can yield consequences for the early stages of planet
formation, particularly with regards to their atmospheres. Models have demonstrated that
the introduction of superflares (> 5% flux increase) are able to irreparably alter the chemistry
of an atmosphere (Venot, Rocchetto, Carl, Roshni Hashim, & Decin, 2016) and expedite
atmospheric photoevaporation (Lammer et al., 2007). Thus, understanding flare rates and
energies at young ages provides crucial keys for understanding the exoplanet population we
see today.

Previous methods of flare detection with both Kepler (Borucki et al., 2010) and Transiting
Exooplanet Survey Satellite (TESS; Ricker et al. (2014)) data have relied on detrending a
light curve and using outlier detection heuristics for identifying flare events (Davenport, 2016;
Giinther & Daylan, 2020). More complex methods, such as a RANdom SAmple Consensus
(RANSAC) algorithm has been tested as well (Vida & Roettenbacher, 2018). RANSAC al-
gorithms identfy and subtract inliers (the underlying light curve) before searching for outliers
above a given detection threshold. Low-amplitude flares can easily be removed with aggres-
sive detrending techniques (e.g. using a small window-length to remove spot modulation).
Additionally, low energy flares likely fall below the outlier threshold, biasing the overall flare
sample towards higher energy flares. As flares exhibit similar temporal evolution (a sharp rise
followed by an exponential decay, with the exception of complex flare groups), machine learn-
ing algorithms may prove suitable for identifying such features without light curve detrending.

stella is an open-source Python package for identifying flares in the TESS two-minute
data with convolutional neural networks (CNNs). Users have the option to use the models
created in Feinstein et al. (2020) or build their own cutomized networks. The training,
validation, and test sets for our CNNs use the flare catalog presented in Giinther et al. (2020).
These light curves are publicly available through the Mikulski Archive for Space Telescopes
and can be downloaded through stella as a wrapper around the lightkurve package
(Lightkurve Collaboration et al., 2018); they are not, by default, included in the package. It
takes approximately twenty minutes to train a stella model from scratch and < 1 minute
to predict flares on a single sector light curve. The package also allows users to measure
rotation periods and fit flares to extract underlying flare parameters. Further documentation
and tutorials can be found at adina.feinste.in/stella.
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