
A parallel global multiobjective framework for
optimization: pagmo
Francesco Biscani1 and Dario Izzo2

1 Max Planck Institute for Astronomy (Heidelberg, D) 2 Advanced Concepts Team, European
Space Research and Technology Center (Noordwijk, NL)

DOI: 10.21105/joss.02338

Software
• Review
• Repository
• Archive

Editor: Eloisa Bentivegna
Reviewers:

• @dgoldri25
• @jangmys

Submitted: 08 June 2020
Published: 13 September 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Mathematical optimization is pervasive in all quantitative sciences. The ability to find good
parameters values in a generic numerical experiment while meeting complex constraints is
of great importance and, as such, has always been an active research topic of mathematics,
numerics and, more recently, artificial intelligence.
Given the vast amount and diversity of optimization problems, as well as of solution ap-
proaches, and considering the need to be able to exploit modern computational architectures,
the development of a tool able to help in such a pervasive task is not trivial.
In this paper we introduce pagmo, a C++ scientific library for massively parallel optimization.
pagmo is built around the idea of providing a unified interface to optimization algorithms and
problems, and to make their deployment in massively parallel environments easy.
Efficient implementantions of bio-inspired and evolutionary algorithms are sided to state-of-
the-art optimization algorithms (Simplex Methods, SQP methods, interior points methods,
etc.) and can be used concurrently (also together with algorithms coded by the user) to build
an optimization pipeline exploiting algorithmic cooperation via the asynchronous, generalized
island model (Izzo, Ruciński, & Biscani, 2012).
pagmo can be used to solve constrained, unconstrained, single objective, multiple objectives,
continuous and integer optimization problems, stochastic and deterministic problems, as well
as to perform research on novel algorithms and paradigms and easily compare them to state-
of-the-art implementations of established ones.
For users that are more comfortable with the Python language, the package pygmo provides
a complete set of Python bindings for pagmo closely following the C++ API.

The optimization problem

In pagmo optimization problems are considered to be in the form:

find: lb ≤ x ≤ ub
to minimize: f(x, s) ∈ Rnobj

subject to: ce(x, s) = 0
ci(x, s) ≤ 0

where x ∈ Rncx × Znix is called a decision vector or chromosome, and is made of ncx real
numbers and nix integers (all represented as doubles). The total problem dimension is then
indicated with nx = ncx +nix. lb,ub ∈ Rncx ×Znix are the box-bounds, f : Rncx ×Znix →

Biscani et al., (2020). A parallel global multiobjective framework for optimization: pagmo. Journal of Open Source Software, 5(53), 2338.
https://doi.org/10.21105/joss.02338

1

https://doi.org/10.21105/joss.02338
https://github.com/openjournals/joss-reviews/issues/2338
https://github.com/esa/pagmo2-paper
https://doi.org/10.5281/zenodo.4013250
https://researcher.watson.ibm.com/person/ibm-Eloisa.Bentivegna
https://github.com/dgoldri25
https://github.com/jangmys
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02338

Rnobj define the objectives, ce : Rncx × Znix → Rnec are nonlinear equality constraints, and
ci : Rncx × Znix → Rnic are nonlinear inequality constraints. Note that the objectives and
constraints also depend on an added value s representing some stochastic variable. Both
equality and inequality constraints are considered as satisfied whenever their definition is met
within a tolerance ctol.
Note that there is no special treatment of a possible linear part of the objectives or con-
straints, and as such solvers in pagmo cannot take advantage of the special structure of linear
programming tasks.
Given the generic form used to represent a problem, pagmo is suitable to solve a broad range
of optimization problems, ranging from single and multiobjective problems to box-bounded
and nonlinearly constrained problems to stochastic problems to continuous, integer and mixed
integer problems.

The pagmo jargon

The discussion on the relation between artificial evolution and mathematical optimization
is an interesting one (Smith, 1978). In pagmo optimization, of all types, is regarded as a
form of evolution. Solving an optimization problem is, in pagmo, described as evolving a
population. Each decision vector is thus referred to also as a chromosome and its fitness
is defined as a vector containing objectives, equality constraints and inequality constraints
in this order. Regardless of whether the user is using, as a solver, a sequential quadratic
programming approach, an interior point optimizer, an evolutionary strategy or some meta-
heuristic, in pagmo the user will always have to call a method called evolve to improve over
the initial solutions stored in a population. A population may or may not live in an island.
When it does, its evolution is delegated to a different computational unit (a process, thread
or remote CPU). Stretching this jargon even further, in pagmo a set of islands optimizing the
same problem is called an archipelago. When solutions are also exchanged among populations
living on the same archipelago, the quality of the overall optimization is often improved (Izzo
et al., 2012). This exchange of information among different solvers is referred to as migrations
and the allowed migration routes (affecting the overall process significantly (Ruciński, Izzo, &
Biscani, 2010)) as the topology of the archipelago.

Exploiting parallelism

Parallelizing optimization tasks in a generic fashion is one of the leading software design
principles of pagmo. According to the type of optimization task, and in particular to the
computational weight of computing the problem fitness function, a different granularity of the
parallelization option may be ideal.

Island Model

As a coarse-grained parallelism, pagmo offers an implementation of the so-called generalized
island model (Izzo et al., 2012). Early ideas on distributing genetic algorithms over multiple
CPUs were developed in the early 90s by Reiko Tanese, one of John Holland’s students (Tanese,
1989). The idea that migrations could improve the quality of the solutions obtained for some
optimization task as well as offer a quasi-linear speedup was, though, confined mainly to
genetic algorithms and called island model. In pagmo any solver, inspired by the Darwinian
evolution paradigm, by swarm intelligence, by any meta-heuristics or based on mathematical
optimality conditions is allowed to exchange information during an evolution with other solvers
connected to it via defined migration paths.

Biscani et al., (2020). A parallel global multiobjective framework for optimization: pagmo. Journal of Open Source Software, 5(53), 2338.
https://doi.org/10.21105/joss.02338

2

https://doi.org/10.21105/joss.02338

Concurrent fitness evaluations

In some situations it is preferable to parallelize the evolution pipeline at a finer grain (e.g.,
if the objective function evaluation is extremely costly). For this purpose, pagmo provides
a batch fitness evaluation framework which can be used by selected algorithms to perform
in parallel the objective function evaluation of multiple independent decision vectors. The
parallel evaluation can be performed by multiple threads, processes, nodes in an HPC cluster
or even by GPU devices (via, e.g., OpenCL or CUDA). In this last case it is up to the user to
code a user-defined batch fitness evaluator.

Related projects / frameworks

A large number of projects, open source as well as commercial, exist whose functionalities
overlap, at least partially, with those of pagmo. On the one hand, projects such as jMetal
(Durillo & Nebro, 2011), DEAP (Fortin, De Rainville, Gardner, Parizeau, & Gagné, 2012),
ParadisEO (Cahon, Melab, & Talbi, 2004) and others originate from the metaheuristic com-
munity and, essentially, offer implementations of a number of derivative-free solvers suitable
for multi-objective and single-objective problems, some with (fine-grained) parallelization ca-
pabilities. On the other hand, projects like AMPL (Fourer, Gay, & Kernighan, 2003) or GAMS
originate from the operational research community and offer modelling languages able to rep-
resent generic optimization problems and to forward them, together with the jacobians and
hessians needed, to compatible solvers. A third type of projects, like NLOpt (Johnson, 2014)
or the Scipy (Virtanen et al., 2020) optimize module offer a number of solvers without making
much distinction between heuristic, derivative-free or local deterministic solvers. The project
pagmo has most of the capabilities of the above mentioned software packages integrated in
the same ecosystem as it offers a large variety of parallelization modes and, above all, the
possibility to code and easily wrap new (or third party) solvers, problems and parallelization
strategies. A unique characteristic of pagmo to be highlighted here, is the presence of an is-
land model implementation (Izzo et al., 2012) that can flexibly distribute any solver, original,
user-implemented or third-party on multiple CPUs.

Code Design

C++

pagmo is written in standard-compliant C++17, and it extensively employs modern program-
ming techniques. Type erasure is used pervasively throughout the codebase to provide a form
of runtime polymorphism which is safer and more ergonomic than traditional object-oriented
programming. Template meta-programming techniques are used for compile-time introspec-
tion, and, paired to sensible defaults, they help to reduce the amount of boilerplate needed to
define new optimisation problems. pagmo is designed for extensive customisation: any element
of the framework (including solvers, islands, batch fitness evaluators, archipelago topologies,
migration policies, etc.) can easily be replaced with custom implementations tailored for
specific needs.

Python

In order to provide an interactive mode of usage (and in order to participate in the ecosys-
tem of what is arguably the most popular language for scientific computing today), pagmo
provides a complete set of Python bindings called pygmo, implemented via pybind11 (Jakob,

Biscani et al., (2020). A parallel global multiobjective framework for optimization: pagmo. Journal of Open Source Software, 5(53), 2338.
https://doi.org/10.21105/joss.02338

3

https://doi.org/10.21105/joss.02338

Rhinelander, & Moldovan, 2017). pygmo exposes all pagmo features, including the ability to
implement new problems, solvers, batch evaluators, topologies etc. in pure Python, using an
API which closely matches the C++ pagmo API. Additionally, pygmo offers Python-specific
features, such as the ability to use ipyparallel (Ragan-Kelley, 2020) for cluster-level paral-
lelisation, and wrappers to use optimisation algorithms from Scipy (Virtanen et al., 2020) as
pygmo algorithms.

Testing and documentation

The pagmo development team places a strong emphasis on automated testing. The code
is fully covered by unit tests, and the continuous integration pipeline checks that the code
compiles and runs correctly on a variety of operating systems (Linux, OSX, Windows) using
different compilers (GCC, Clang, MSVC). Both the C++ and Python APIs are fully docu-
mented, and as a policy we require that every PR to pagmo or pygmo must not decrease
testing or documentation coverage.

Some API examples

In this section, we will show how pagmo and pygmo can be used to solve a very simple
optimisation problem using the Differential Evolution (DE) algorithm (Storn & Price, 1997).
The problem that we will solve is the minimisation of the unidimensional sphere function,

f (x) = x2,

subject to the box bounds x ∈ [0, 1]. This is, of course, a trivial problem with solution x = 0,
and it is used here only for didactic purposes.

C++

#include <iostream>
#include <utility>

#include <pagmo/algorithm.hpp>
#include <pagmo/algorithms/de.hpp>
#include <pagmo/population.hpp>
#include <pagmo/problem.hpp>
#include <pagmo/types.hpp>

using namespace pagmo;

// Definition of the optimisation problem.
struct sphere_1d
{

// Definition of the box bounds.
std::pair<vector_double, vector_double> get_bounds() const
{

return {{0.}, {1.}};
}
// Definition of the objective function.
vector_double fitness(const vector_double &dv) const
{

return {dv[0] * dv[0]};

Biscani et al., (2020). A parallel global multiobjective framework for optimization: pagmo. Journal of Open Source Software, 5(53), 2338.
https://doi.org/10.21105/joss.02338

4

https://doi.org/10.21105/joss.02338

}
};

int main()
{

// Create a random population of 20 initial
// guesses for the sphere_1d problem.
population pop{sphere_1d{}, 20};

// Create the optimisation algorithm.
// We will use 500 generations.
algorithm algo{de{500}};

// Run the optimisation, which will
// produce a new "evolved" population.
auto new_pop = algo.evolve(pop);

// Print to screen the fitness of the
// best solution in the new population.
std::cout << "Fitness of the best solution: "

<< new_pop.champion_f()[0] << '\n';
}

In pagmo, decision vectors and problem bounds are represented via the pagmo::vector_doub
le type, which is currently just an alias for std::vector<double>. The fitness function also
returns a vector_double, because, generally-speaking, the fitness vector must accommodate
multiple scalar values to represent multiple objectives and constraints. Here, however, the
sphere_1d problem is single-objective and unconstrained, and thus the only element in the
fitness vector will be the value of the objective function.
In this example, 20 initial conditions for the optimisation are randomly chosen within the
problem bounds when creating the pop object. It is of course possible to explicitly set the
initial conditions, if so desired. The Differential Evolution algorithm object is then created,
specifying 500 generations as a stopping criterion.
The initial population pop is then evolved, and the result is a new population of optimised
decision vectors, new_pop. The fitness of the best decision vector (the “champion”) is then
printed to the screen.
sphere_1d, as an unconstrained, single-objective, continuous optimisation problem, is the
simplest optimisation problem type that can be defined in pagmo. More complex problems
can be defined by adding new member functions to the problem class. For instance:

• by implementing the get_nec() and get_nic() member functions, the user can specify
the number of, respectively, equality and inequality constraints in the problem. If, like
in the case of sphere_1d, these functions are not implemented, pagmo assumes that
the problem is unconstrained;

• by implementing the get_nobj() member function, the user can specify the number
of objectives in the optimisation problem. If this function is not implemented, pagmo
assumes that the problem is single-objective.

Python

from pygmo import problem, algorithm, population, de

Biscani et al., (2020). A parallel global multiobjective framework for optimization: pagmo. Journal of Open Source Software, 5(53), 2338.
https://doi.org/10.21105/joss.02338

5

https://doi.org/10.21105/joss.02338

Definition of the optimisation problem.
class sphere_1d:

Definition of the box bounds.
def get_bounds(self):

return ([0], [1])
Definition of the objective function.
def fitness(self, dv):

return [dv[0]**2]

Create a random population of 20 initial
guesses for the sphere_1d problem.
pop = population(sphere_1d(), 20)

Create the optimisation algorithm.
algo = algorithm(de(500))

Run the optimisation, which will
produce a new "evolved" population.
new_pop = algo.evolve(pop)

Print to screen the fitness of the
best solution in the new population.
print(new_pop.champion_f)

As shown in this example, the pygmo Python API very closely follows the pagmo C++ API.
pygmo seamlessly integrates with the wider scientific Python ecosystem. For instance:

• in addition to generic Python iterables (list, tuples, etc.), NumPy arrays (Walt, Colbert,
& Varoquaux, 2011) can be used as data types to represent decision vectors, constraints,
gradients, Hessians, etc.;

• various optimisation analysis tools based on Matplotlib (Hunter, 2007) are provided;
• archipelago topologies can be exported, imported and studied as NetworkX graph objects

(Hagberg, Swart, & S Chult, 2008).

Availability

Both pagmo and pygmo are available in the conda package manager through the conda-forge
community-driven channel. Additionally, the core team also maintains pip packages for Linux.
The wider pagmo user community provides also additional packages for Arch Linux, OSX (via
Homebrew) and FreeBSD.

Acknowledgments

We acknowledge the support of the Google Summer of Code initiative, the European Space
Agency Summer of Code in Space and Dow Corporation during different phases of the de-
velopment. Many of our colleagues and friends have, in the years, supported the project
contributing to evolve its code base and API to what we have today. We would like to men-
tion, in particular, Luís Felismino Simões, Marek Ruciński, Marcus Märtens, Krzysztof Nowak,
Giacomo Acciarini and Moritz v. Looz.

Biscani et al., (2020). A parallel global multiobjective framework for optimization: pagmo. Journal of Open Source Software, 5(53), 2338.
https://doi.org/10.21105/joss.02338

6

https://doi.org/10.21105/joss.02338

References

Cahon, S., Melab, N., & Talbi, E.-G. (2004). Paradiseo: A framework for the reusable
design of parallel and distributed metaheuristics. Journal of heuristics, 10(3), 357–380.
doi:10.1023/B:HEUR.0000026900.92269.ec

Durillo, J. J., & Nebro, A. J. (2011). JMetal: A java framework for multi-objective opti-
mization. Advances in Engineering Software, 42(10), 760–771. doi:10.1016/j.advengsoft.
2011.05.014

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A. G., Parizeau, M., & Gagné, C. (2012).
DEAP: Evolutionary algorithms made easy. The Journal of Machine Learning Research,
13(1), 2171–2175.

Fourer, R., Gay, D. M., & Kernighan, B. W. (2003). AMPL. A modeling language for
mathematical programming.

Hagberg, A., Swart, P., & S Chult, D. (2008). Exploring network structure, dynamics, and
function using networkx. Los Alamos National Lab. (LANL), Los Alamos, NM (United
States).

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. doi:10.1109/MCSE.2007.55

Izzo, D., Ruciński, M., & Biscani, F. (2012). The generalized island model. In Paral-
lel architectures and bioinspired algorithms (pp. 151–169). Springer. doi:10.1007/
978-3-642-28789-3_7

Jakob, W., Rhinelander, J., & Moldovan, D. (2017). Pybind11 – seamless operability between
c++11 and python. Retrieved from https://github.com/pybind/pybind11

Johnson, S. G. (2014). The nlopt nonlinear-optimization package. Retrieved from http:
//github.com/stevengj/nlopt

Ragan-Kelley, M. (2020). Ipyparallel: Interactive parallel computing in python. GitHub repos-
itory. GitHub. Retrieved from https://github.com/ipython/ipyparallel

Ruciński, M., Izzo, D., & Biscani, F. (2010). On the impact of the migration topology on the
island model. Parallel Computing, 36(10-11), 555–571. doi:10.1016/j.parco.2010.04.002

Smith, J. M. (1978). Optimization theory in evolution. Annual Review of Ecology and
Systematics, 9(1), 31–56. doi:10.1146/annurev.es.09.110178.000335

Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.
doi:10.1023/A:1008202821328

Tanese, R. (1989). Distributed genetic algorithms for function optimization.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,

Burovski, E., et al. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17, 261–272. doi:10.1038/s41592-019-0686-2

Walt, S. van der, Colbert, S. C., & Varoquaux, G. (2011). The numpy array: A structure
for efficient numerical computation. Computing in Science & Engineering, 13(2), 22–30.
doi:10.1109/mcse.2011.37

Biscani et al., (2020). A parallel global multiobjective framework for optimization: pagmo. Journal of Open Source Software, 5(53), 2338.
https://doi.org/10.21105/joss.02338

7

https://doi.org/10.1023/B:HEUR.0000026900.92269.ec
https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/978-3-642-28789-3_7
https://doi.org/10.1007/978-3-642-28789-3_7
https://github.com/pybind/pybind11
http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt
https://github.com/ipython/ipyparallel
https://doi.org/10.1016/j.parco.2010.04.002
https://doi.org/10.1146/annurev.es.09.110178.000335
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/mcse.2011.37
https://doi.org/10.21105/joss.02338

	Summary
	The optimization problem
	The pagmo jargon
	Exploiting parallelism
	Island Model
	Concurrent fitness evaluations

	Related projects / frameworks
	Code Design
	C++
	Python
	Testing and documentation

	Some API examples
	C++
	Python

	Availability
	Acknowledgments
	References

