
StoSpa2: A C++ software package for stochastic
simulations of spatially extended systems
Bartosz J. Bartmanski1 and Ruth E. Baker1

1 Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
DOI: 10.21105/joss.02293

Software
• Review
• Repository
• Archive

Editor: Pierre de Buyl
Reviewers:

• @CFGrote
• @mbkumar

Submitted: 20 May 2020
Published: 19 June 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Mathematical modelling of complex biological phenomena allows us to understand the contri-
butions of different processes to observed behaviours. Many of these phenomena involve the
reaction and diffusion of molecules and so we use so-called reaction-diffusion models to de-
scribe them mathematically. Reaction-diffusion models are often subdivided into three types
(Hellander & Petzold, 2017): macroscopic, mesoscopic and microscopic. Models that describe
a system in terms of concentrations are termed macroscopic models. At the other end of the
spectrum we have microscopic models that describe a system by specifying the positions (and
often velocities) of each molecule. The middle ground between these two scales is covered by
mesoscopic models, in which stochasticity and some individual-level details are included with-
out directly tracking the position of every single molecule. Macroscale models ignore crucial
details such as stochastic effects, while microscale models tend to be computationally intensive
(Osborne, Fletcher, Pitt-Francis, Maini, & Gavaghan, 2017; Van Liedekerke, Palm, Jagiella, &
Drasdo, 2015). Mesoscale models offer a good balance in that they include stochastic effects
without incurring enormous computational overheads. The frameworks of the chemical mas-
ter equation (CME) and its spatial extension, the reaction-diffusion master equation (RDME)
(Isaacson, 2009, 2013; Van Kampen, 1992), provide mesoscopic models of reaction and diffu-
sion. However, in the majority of these cases, models built in the CME/RDME framework are
analytically intractable and so model behaviours must be explored using stochastic simulation
algorithms.
StoSpa2 is a C++ software package for stochastic simulation of models constructed using the
CME and RDME frameworks. This software package allows for efficient simulations with a
user friendly interface, and it includes functionality for simulations on both static and growing
domains, and time-varying reaction rates.
The primary audience of StoSpa2 are researchers who wish to model a chemical or biological
system using the CME or RDME frameworks.

The software

StoSpa2 allows for a wide range of stochastic simulations within the CME and the RDME
frameworks. Within the RDME framework, the simulations are independent of the mesh type,
hence, the simulations can be run on both structured and unstructured meshes. Examples
of both structured and unstructured meshes can be seen in Figure 1. Furthermore, StoSpa2
allows for simulations on a uniformly growing domain, by using the Extrande method (Voliotis,
Thomas, Grima, & Bowsher, 2016).

Bartmanski et al., (2020). StoSpa2: A C++ software package for stochastic simulations of spatially extended systems. Journal of Open Source
Software, 5(50), 2293. https://doi.org/10.21105/joss.02293

1

https://doi.org/10.21105/joss.02293
https://github.com/openjournals/joss-reviews/issues/2293
https://github.com/BartoszBartmanski/StoSpa2
https://doi.org/10.5281/zenodo.3901670
http://pdebuyl.be/
https://github.com/CFGrote
https://github.com/mbkumar
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02293

Figure 1: Examples of meshes that can be used within StoSpa2 for RDME simulations. On the
left-hand side is an example of an unstructured mesh, while on the right-hand side is an example of
a structured mesh.

The core of the package is written in the C++ programming language to make simulations as
efficient as possible. The number of packages need to use StoSpa2 has been intentionally kept
as small as possible to make sure that the software can be used in any computing environment
that can compile C++ code.
To make the software user-friendly, the application programming interface (API) has been
designed with simplicity in mind. All the details about the API can be found at StoSpa
2 documentation website (https://stospa2.readthedocs.io). Furthermore, we have included
Python bindings, which allow simulations to be run from within the Python programming
language. Pybind11 (https://github.com/pybind/pybind11) is used to create pystospa, the
Python binding of StoSpa2. Having a Python interface for a software package saves the user
from having to recompile code themselves for every simulation, making StoSpa2 easier to
use.
The continuous integration platform TravisCI (https://travis-ci.org/) is used to make sure
that any changes in the code-base do not break any functionality of StoSpa2. Both the
installation and the functionality are tested on Linux and OSX operating systems.

Status of the field

The CME and RDME frameworks are used to model various phenomena in fields such as
chemistry, epidemiology and systems biology. The goal behind making StoSpa2 is to facilitate
easy and fast simulations of systems modelled using the CME and RDME. There are some
alternative software packages that can be used, for example, URDME (Drawert, Engblom,
& Hellander, 2012) and MesoRD (Fange, Mahmutovic, & Elf, 2012), however these both
have dependencies that can be a barrier to installation and use; URDME has proprietary
software as dependencies, while MesoRD has a large number of dependencies that make
it challenging to install. StochSS (Drawert et al., 2016) is another software package, and
provides a docker container and a web interface. However, docker containers require special
privileges to run, which not every user may have, and the web interface does not allow high

Bartmanski et al., (2020). StoSpa2: A C++ software package for stochastic simulations of spatially extended systems. Journal of Open Source
Software, 5(50), 2293. https://doi.org/10.21105/joss.02293

2

https://stospa2.readthedocs.io
https://github.com/pybind/pybind11
https://travis-ci.org/
https://doi.org/10.21105/joss.02293

throughput execution of simulations. Hence, we developed StoSpa2, which relies upon as few
dependencies as possible and is designed to be easily installed. Furthermore, our software can
simulate dynamics on a uniformly growing domain using the Extrande method (Voliotis et al.,
2016), while the alternatives cannot.

Installation

The code for StoSpa2 is hosted on GitHub (https://github.com/BartoszBartmanski/
StoSpa2) with installation instructions contained in the README.md file. The first way of
installing StoSpa2 involves downloading the source code from the GitHub repository and
compiling the C++ code according to the instructions in the README.md file. However, an
easier alternative is to use the Python package manager, pip, to download the Python binding
of StoSpa2, pystospa, from https://pypi.org/project/pystospa/ and install it appropriately.
All details of the installation, as well as more information, are contained in the documentation
website (https://stospa2.readthedocs.io/en/latest/).

Examples

In the following examples, we refer as voxels to the sub-intervals of a domain of the system to
be modelled, while with a mesh we refer to how the voxels are organised in space in relation
to each other.

Chemical master equation example

As first example, let us consider the following chemical reaction

A
k−→ ∅ ,

which occurs at some rate k s−1 on a domain Ω = [0 cm, 1 cm]. We can simulate this chemical
system with the following code

#include "simulator.hpp"

int main() {
//// Create voxel object. ////
// number of molecules of species A
std::vector<unsigned> initial_num = {100};
// size of the domain in cm
double domain_size = 10.0;
// Arguments: vector of number of molecules, size of the voxel
StoSpa2::Voxel v(initial_num, domain_size);

//// Create reaction object. ////
double k = 1.0;
auto propensity = [](

const std::vector<unsigned>& num_mols,
const double& area)
{ return num_mols[0]; };

std::vector<int> stoch = {-1};
// Arguments: reaction rate, propensity func, stoichiometry vector
StoSpa2::Reaction r(k, propensity, stoch);

Bartmanski et al., (2020). StoSpa2: A C++ software package for stochastic simulations of spatially extended systems. Journal of Open Source
Software, 5(50), 2293. https://doi.org/10.21105/joss.02293

3

https://github.com/BartoszBartmanski/StoSpa2
https://github.com/BartoszBartmanski/StoSpa2
https://pypi.org/project/pystospa/
https://stospa2.readthedocs.io/en/latest/
https://doi.org/10.21105/joss.02293

// Add a reaction to a voxel
v.add_reaction(r);

// Pass the voxel with the reaction(s) to the simulator object
StoSpa2::Simulator s({v});

// Run the simulation.
// Arguments: path to output file, time step, number of steps
s.run("cme_example.dat", 0.01, 500);

}

The first line of code in the above example makes sure that we can use the StoSpa2 classes.
In the main function we first define the Voxel object that will represent the domain of the
system:

std::vector<unsigned> initial_num = {100};
double domain_size = 10.0;
StoSpa2::Voxel v(initial_num, domain_size);

where we place 100 molecules of species A into a domain of size 1.0 cm (which in our case is
a single voxel of size 1.0 cm).
In the next segment of the code we create the lambda function that represents the propensity
function and the Reaction object with a rate of k = 1.0 s−1, the propensity function pro
pensity and the stoichiometry vector which decreases the number of molecules by one any
time that the decay reaction happens:

double k = 1.0;
auto propensity = [](

const std::vector<unsigned>& num_mols,
const double& area)
{ return num_mols[0]; };

std::vector<int> stoch = {-1};
StoSpa2::Reaction r(k, propensity, {-1});

Though, the reaction propensity function in this case would be ka with a being the number
of molecules of A, whereas the above lambda function returns just the number of molecules.
This interface was chosen as to not repeat a lambda function definition if similar reactions
appear more than once, for example if the reaction happens in multiple voxels. The lambda
functions for the reaction propensities have to take two arguments: a vector and a double.
The vector represents the number of molecules and the double representing the area of a
voxel. We then pass the Reaction object to the Voxel:

v.add_reaction(r);

Finally, we run the simulation, which saves the output into example.dat file every 0.01 s for
500 steps.

StoSpa2::Simulator sim({v});
sim.run("cme_example.dat", 0.01, 500);

Bartmanski et al., (2020). StoSpa2: A C++ software package for stochastic simulations of spatially extended systems. Journal of Open Source
Software, 5(50), 2293. https://doi.org/10.21105/joss.02293

4

https://doi.org/10.21105/joss.02293

We can see example output of a simulation in Figure 2.
The Python binding of StoSpa2, called pystospa, allows us to run the same simulation using
the Python programming language. The Python code in this case is as follows:

import pystospa as ss

Create voxel object.
Arguments: vector of number of molecules, size of the voxel
initial_num = [100] # number of molecules of species A
domain_size = 10.0 # size of the domain in cm
v = ss.Voxel(initial_num, domain_size)

Create reaction object.
Arguments: reaction rate, propensity func, stoichiometry vector
k = 1.0
propensity = lambda num_mols, area : num_mols[0]
stoch = [-1]
r = ss.Reaction(k, propensity, stoch)

Add a reaction to a voxel
v.add_reaction(r)

Pass the voxel with the reaction(s) to the simulator object
s = ss.Simulator([v])
Run the simulation.
Arguments: path to output file, time step, number of steps
s.run("cme_example.dat", 0.01, 500)

which has a very similar interface as the C++ code, but has the benefit of not needing any
compilation once pystospa is installed.

Figure 2: Example of a simulation output for a system modelled using CME framework. A single
species of molecules decays at rate k s−1.

Bartmanski et al., (2020). StoSpa2: A C++ software package for stochastic simulations of spatially extended systems. Journal of Open Source
Software, 5(50), 2293. https://doi.org/10.21105/joss.02293

5

https://doi.org/10.21105/joss.02293

Reaction-diffusion master equation example

To demonstrate how StoSpa2 can be used to run simulations within the RDME framework an
example of a one-dimensional domain [0 cm, 10 cm], discretised into 10 voxels of equal size
1 cm is used. Within RDME framework, diffusion is modelled as a jump process, and so can
be described as a series of reactions as shown below

A1
d⇌ A2

d⇌ A3
d⇌ ...

d⇌ A10 ,

where Ai is the the number of molecules of A in voxel i. The propensity functions for the
above diffusion reactions have the following form dai for a molecule of A to jump from voxel
i to either of the neighbouring ones. The C++ code for such a system is as follows:

#include "simulator.hpp"

using namespace StoSpa2;

int main() {

// Create a vector of voxel objects.
// Arguments: vector of number of molecules, size of the voxel
std::vector<unsigned> initial_num = {10000};
double voxel_size = 1.0;
// First create nine empty voxels
std::vector<Voxel> vs = std::vector<Voxel>(9, Voxel({0}, voxel_size));
// Then add the non-empty voxel at the beginning
vs.insert(vs.begin(), Voxel(initial_num, voxel_size));

double d = 1.0; // diffusion rate
auto propensity = [](

const std::vector<unsigned>& num_mols,
const double& area)

{ return num_mols[0]; };
std::vector<int> stoch = {-1};
// Create and add the reaction objects
for (unsigned i=0; i<vs.size()-1; i++) {

// Add diffusion jump to the right from voxel i to voxel i+1
vs[i].add_reaction(Reaction(d, propensity, stoch, i+1));
// Add diffusion jump to the left from voxel i+1 to voxel i
vs[i+1].add_reaction(Reaction(d, propensity, stoch, i));

}

// Pass the voxels with the reaction(s) to the simulator object
Simulator s(vs);

// Run the simulation.
// Arguments: path to output file, time step, number of steps
s.run("rdme_example.dat", 0.01, 500);

}

which is included in the examples directory of StoSpa2.
The code is somewhat similar to the chemical master equation example, except we have more
Voxel objects. We also include the extra line using namespace StoSpa2 to save us having
to write StoSpa2:: in front of every StoSpa2 class.

Bartmanski et al., (2020). StoSpa2: A C++ software package for stochastic simulations of spatially extended systems. Journal of Open Source
Software, 5(50), 2293. https://doi.org/10.21105/joss.02293

6

https://doi.org/10.21105/joss.02293

We start by initialising the Voxel objects that make up the domain of the system. First, we
set the variables that define the number of molecules in the left-most voxel and the size of
every voxel. Then, we initialise a vector of nine Voxel objects that contain no molecules and
we slot an additional Voxel object at the beginning of this vector with 10000 molecules:

std::vector<unsigned> initial_num = {10000};
double voxel_size = 1.0;
// First create nine empty voxels
std::vector<Voxel> vs = std::vector<Voxel>(9, Voxel({0}, voxel_size));
// Then add the non-empty voxel at the beginning
vs.insert(vs.begin(), Voxel(initial_num, voxel_size));

We add reactions to the voxels, where we assume that the voxels are ordered by their position
on the x-axis. When adding the diffusion reactions, we have one additional parameter in the
Reaction class constructors, namely diffusion_idx, which is the index of the neighbouring
voxel in to which a molecule jumps if a diffusion reaction happens:

double d = 1.0; // diffusion rate
auto propensity = [](

const std::vector<unsigned>& num_mols,
const double& area)

{ return num_mols[0]; };
std::vector<int> stoch = {-1};
// Create and add the reaction objects
for (unsigned i=0; i<vs.size()-1; i++) {

// Add diffusion jump to the right from voxel i to voxel i+1
vs[i].add_reaction(Reaction(d, propensity, stoch, i+1));
// Add diffusion jump to the left from voxel i+1 to voxel i
vs[i+1].add_reaction(Reaction(d, propensity, stoch, i));

}

And finally, as in the previous example, we run the simulation with the Simulator class
instance by passing the vector of Voxel objects to it and calling the Simulator class run
function

Simulator s(vs);
s.run("rdme_example.dat", 0.01, 500);

which takes the path to a file where to save the data, followed by the size of the time-step
and the number of steps to take to finish the simulation. The state of the simulation, initially
and at the final time point, is shown in Figure 3 where the molecules diffuse as expected.

Bartmanski et al., (2020). StoSpa2: A C++ software package for stochastic simulations of spatially extended systems. Journal of Open Source
Software, 5(50), 2293. https://doi.org/10.21105/joss.02293

7

https://doi.org/10.21105/joss.02293

Figure 3: Example of a simulation output for a system modelled using RDME framework. Molecules
of a single species jump between the voxels at rate d = 1.0cm2s−1, which compose the whole domain
of the system.

Growing domain

StoSpa2 allows for stochastic simulations on a uniformly growing domain. The example from
the previous section can be extended to a simulation on a growing domain, by defining the
domain of the system using Ω(t) = [0, L(t)], where L(t) = L0e

rt cm. All the voxels growth
deterministically according to h = L0e

rt/N where N is the number of voxels, which doesn’t
change over the course of a simulation. As in the previous example, we discretise the domain
Ω into 10 equally-sized voxels, with L0 = 10 cm and r = 0.2 s−1, hence the code for such a
simulation is as follows

#include "simulator.hpp"

using namespace StoSpa2;

int main() {
// We define a lambda function that represents the domain growth function
auto growth = [](const double& t) { return exp(0.2 * t); };

// Create a vector of voxel objects.
// Arguments: vector of number of molecules, size of the voxel
std::vector<unsigned> initial_num = {10000};
double voxel_size = 1.0;
// First create nine empty voxels
std::vector<Voxel> vs = std::vector<Voxel>(9, Voxel({0}, voxel_size, growth));
// Then add the non-empty voxel at the beginning
vs.insert(vs.begin(), Voxel(initial_num, voxel_size, growth));

double d = 1.0; // diffusion rate
auto propensity = [](

const std::vector<unsigned>& num_mols,

Bartmanski et al., (2020). StoSpa2: A C++ software package for stochastic simulations of spatially extended systems. Journal of Open Source
Software, 5(50), 2293. https://doi.org/10.21105/joss.02293

8

https://doi.org/10.21105/joss.02293

const double& area)
{ return num_mols[0]; };
std::vector<int> stoch = {-1};
// Create and add the reaction objects
for (unsigned i=0; i<vs.size()-1; i++) {

// Add diffusion jump to the right from voxel i to voxel i+1
vs[i].add_reaction(Reaction(d, propensity, stoch, i+1));
// Add diffusion jump to the left from voxel i+1 to voxel i
vs[i+1].add_reaction(Reaction(d, propensity, stoch, i));

}

// Pass the voxels with the reaction(s) to the simulator object
Simulator s(vs);

// Run the simulation.
// Arguments: path to output file, time step, number of steps
s.run("rdme_example.dat", 0.01, 500);

}

where there are very few differences between this case and the case in the previous section.
The main difference being the addition of growth function as a lambda function

auto growth = [](const double& t) { return exp(0.2 * t); };

and initialising the Voxel objects with the growth lambda function as a third argument. The
comparison of the simulation output between a static domain and a growing one can be seen
in Figure 4, where the molecules have diffused to a space more than twice the size of the
initial domain by the end of the simulation.

Figure 4: Comparison of a simulation on growing domain with a static one.

Bartmanski et al., (2020). StoSpa2: A C++ software package for stochastic simulations of spatially extended systems. Journal of Open Source
Software, 5(50), 2293. https://doi.org/10.21105/joss.02293

9

https://doi.org/10.21105/joss.02293

Acknowledgements

B.J.B. was supported by the Engineering and Physical Sciences Research Council [grant num-
ber EP/G03706X/1]; R.E.B. is a Royal Society Wolfson Research Merit Award holder, would
like to thank the Leverhulme Trust for a Research Fellowship.

References

Drawert, B., Engblom, S., & Hellander, A. (2012). URDME: A modular framework for
stochastic simulation of reaction-transport processes in complex geometries. BMC systems
biology, 6(1), 76. doi:10.1186/1752-0509-6-76

Drawert, B., Hellander, A., Bales, B., Banerjee, D., Bellesia, G., Daigle Jr, B. J., Douglas, G.,
et al. (2016). Stochastic simulation service: Bridging the gap between the computational
expert and the biologist. PLoS computational biology, 12(12). doi:10.1371/journal.pcbi.
1005220

Fange, D., Mahmutovic, A., & Elf, J. (2012). MesoRD 1.0: Stochastic reaction-diffusion
simulations in the microscopic limit. Bioinformatics, 28(23), 3155–3157. doi:10.1093/
bioinformatics/bts584

Hellander, S., & Petzold, L. (2017). Reaction rates for reaction-diffusion kinetics on unstruc-
tured meshes. The Journal of Chemical Physics, 146(6), 064101. doi:10.1063/1.4975167

Isaacson, S. A. (2009). The reaction-diffusion master equation as an asymptotic approximation
of diffusion to a small target. SIAM Journal on Applied Mathematics, 70(1), 77–111.
doi:10.1137/070705039

Isaacson, S. A. (2013). A convergent reaction-diffusion master equation. The Journal of
Chemical Physics, 139(5), 054101. doi:10.1063/1.4816377

Osborne, J. M., Fletcher, A. G., Pitt-Francis, J. M., Maini, P. K., & Gavaghan, D. J. (2017).
Comparing individual-based approaches to modelling the self-organization of multicellular
tissues. PLOS Computational Biology, 13(2), 1–34. doi:10.1371/journal.pcbi.1005387

Van Kampen, N. G. (1992). Stochastic processes in physics and chemistry (Vol. 1). Elsevier.
Van Liedekerke, P., Palm, M. M., Jagiella, N., & Drasdo, D. (2015). Simulating tissue me-

chanics with agent-based models: Concepts, perspectives and some novel results. Com-
putational particle mechanics, 2(4), 401–444. doi:10.1007/s40571-015-0082-3

Voliotis, M., Thomas, P., Grima, R., & Bowsher, C. G. (2016). Stochastic simulation of
biomolecular networks in dynamic environments. PLoS Computational Biology, 12(6).
doi:10.1371/journal.pcbi.1004923

Bartmanski et al., (2020). StoSpa2: A C++ software package for stochastic simulations of spatially extended systems. Journal of Open Source
Software, 5(50), 2293. https://doi.org/10.21105/joss.02293

10

https://doi.org/10.1186/1752-0509-6-76
https://doi.org/10.1371/journal.pcbi.1005220
https://doi.org/10.1371/journal.pcbi.1005220
https://doi.org/10.1093/bioinformatics/bts584
https://doi.org/10.1093/bioinformatics/bts584
https://doi.org/10.1063/1.4975167
https://doi.org/10.1137/070705039
https://doi.org/10.1063/1.4816377
https://doi.org/10.1371/journal.pcbi.1005387
https://doi.org/10.1007/s40571-015-0082-3
https://doi.org/10.1371/journal.pcbi.1004923
https://doi.org/10.21105/joss.02293

	Summary
	The software
	Status of the field
	Installation
	Examples
	Chemical master equation example
	Reaction-diffusion master equation example
	Growing domain

	Acknowledgements
	References

