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Summary

Genetic Programming (GP), is a computational technique based on the idea of representing
a computer program in some dedicated data-structure (e.g. a tree) to then evolve it using
genetic algorithms as to improve its ability at solving a predefined task. How good a certain
program is at solving the task is typically encapsulated in its fitness: a vector of floating point
values defining various aspects of the program. In a typical example, the fitness would be
the program output error with respect to a predefined behaviour over a number of inputs.
Generation after generation, the genetic algorithm would then improve such a fitness in the
attempt to have the program behave correctly.
The idea flourished in the late 80s mainly thanks to the work of John Koza (Koza, 2010),
and (using the words of Koza) has always had a “hidden skeleton in the closet”: the difficulty
to find and evolve real valued parameters in the expressed program. A recent development
called differentiable genetic programming (Izzo, Biscani, & Mereta, 2017), was introduced
to address exactly this issue by allowing to learn constants in computer programs using the
differential information of the program outputs as obtained using automated differentiation
techniques.
The evolution of a differentiable genetic program can be supported by using the information
on the derivatives (at any order) of the program outputs with respect to chosen parameters,
enabling in GP the equivalent of back-propagation in Artificial Neural Networks (ANN). The
fitness of a program can thus be defined also in terms of its derivatives, allowing to go beyond
symbolic regression tasks and, for example, to solve differential equations, learn differential
models, capture conserved quantities in dynamical systems, search for Lyapunov functions in
controlled systems, etc..
In this work we introduce the C++ library dcgp and the Python package dcgpy, tools we
developed to allow research into the applications enabled by differentiable genetic program-
ming. In the rest of this paper, we will refer mainly to dcgp, with the understanding that the
a corresponding behaviour can always be also obtained in dcgpy.
A different library called CGP-Library (Turner & Miller, 2015) is already available as a cross
platform C implementation of Cartesian Genetic Programming, designed to be simple to use
and extendable. The dcgp library here introduced, differs in several aspects: it allows to
perform derivatives on the represented programs (hence implementing a differentiable form of
genetic programming), it allows to use Python to use runtime scripting, it is thread-safe and
it allows to define kernels as generic functors.
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Methods

In dcgp computer programs are encoded using the Cartesian Genetic Programming (CGP)
encoding (Miller, 2011), that is an acyclic graph representation. A Cartesian genetic program,
in its original form, is depicted in Figure 1 and is defined by the number of inputs n, the
number of outputs m, the number of rows r, the number of columns c, the levels-back l,
the arity a of its functional units (kernels) and the set of possible kernels. With reference to
Figure 1, each of the n+ rc nodes in a CGP is assigned a unique id. The vector of integers:

xI = [F0, C0,0, C0,1, ..., C0,a, F1, C1,0, ....., O1, O2, ..., Om]

defines entirely the value of the terminal nodes and thus the computer program.

Figure 1: A classical CGP.

Several kernels are already available in dcgp, but the user can define his own both in the C++
and in the Python version, allowing for the possibility to consider kernels that are, themselves,
genetic programs.
In dcgp the CGP representations of programs are all derived from a base C++ templated class
dcgp::expression<T>. The use of the template parameter T allows to compute the nodes
of the acyclic graph defining the computer program, and thus its outputs, using different
computational types. In particular, the use of generalized dual numbers, implemented as a
new type in the library audi (Izzo & Biscani, 2020), are enabled and can be used to obtain
the derivatives, at any order, of the program outputs with respect to parameters present in
its encoding. Generalized dual numbers are elements of the algebra of truncated Taylor
polynomials and act, in this context, as a high order, forward mode, automated differentia-
tion method. The library audi makes computations in this algebra rather straight-forward
by defining all the basic arithmetics rules for the new type audi::gdual<T> which, essen-
tially, represents a multivariate Taylor polynomial and thus contains all the derivatives of the
considered expansion.
The two classes dcgp::expression_weighted<T> and dcgp::expression_ann derive from
the base class dcgp::expression<T> and offer new, extended, kinds of CGP representations.
dcgp::expression_weighted<T> adds a weight to each node connection and thus creates
a program rich in floating point constants to be learned. dcgp::expression_ann adds also
a bias to each node, thus making it possible to represent generic artificial neural networks.
Since forward mode automated differentiation is highly unefficient whenever a high number
of parameters are to be learned (a typical situation when training ANN weights and biases),
dcgp::expression_ann is only allowed to operate on the type double. Its weights and
biases can be learned using backward mode automated differentiation (back propagation) and
a stochastic gradient descent algorithm implemented specifically for the class.
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All computer programs represented in dcgp can be mutated via the corresponding methods
of the dcgp::expression<T> base class, and thus evolved. Mutations can be chosen se-
lectively to affect only specific part of the chromosome, thus affecting only the kernels, the
connections or the output nodes. As an example, the different consequences of such mu-
tations are visualized, in the case of a dcgp::expression_ann, in Figure 2 and studied
preliminarily in (Märtens & Izzo, 2019). No crossover is implemented at the level of the
dcgp::expression<T>, as the original technique employed to evolve Cartesian genetic pro-
grams (Miller, 2011) was purely mutation based. We do intend to add this possibility in future
versions.

Figure 2: Effects of mutations on a dCGPANN.

When using a dcgp::expression<T> for a symbolic regression task, dcgp includes also
several novel evolutionary startegies (Schwefel, 1993), memetic and multiobjective, as well
as a dedicated dcgp::symbolic_regression class that represents such problems as an
optimization problem.

Notes on efficiency

The process of evolving a CGP can be lengthy and, being subject to a degree of randomness,
is typically repeated a few times to explore the diversity of possible evolved solutions. As a
consequence, CPU efficiency is an enabler to build a successful learning pipeline. In the C++
library dcgp there are several parallelization levels that can be exploited for this purpose. To
start with, the program loss with respect to its expected output, can be parallelized when
computed on multiple points. A second layer of parallelization is offered by audi (Izzo &
Biscani, 2020) when generalized dual numbers are employed. In this case, the underlying
truncated Taylor polynomial algebra makes use of fine grained parallelization. A third layer
is also present in the non memetic optimization algorithms shipped with dcgp as they can
evaluate the fitness of the various individuals in parallel using a batch fitness evaluator. All
the resulting nested parallelism is dealt with using the ®Intel threading building blocks library.
In the Python package dcgpy things are different as multi-threading is not permitted by
the Python interpreter and the multi-process paradigm is highly unefficient for a fine grained
parallelization. As a consequence, most of the mentioned parallelization are unavailable. The
use of coarse-grained parallelization paradigms, such as the island model for evolutionary
algorithms, is thus suggested to achieve the best out of dcgpy computational times.
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C++ and Python APIs

Two separate APIs are maintained for the C++ and Python version of the code. While
the APIs are designed to be as close as possible, and to offer a similar experience, there
are inevitable differences stemming from the very different capabilities of the languages (to
mention one, think about the lack of an equivalent to C++ templates in Python).
In Python a typical initial use of the dcgpy package, would look like:

import dcgpy
ks = dcgpy.kernel_set_double(["sum", "diff", "div", "mul"])
ex = dcgpy.expression_double(inputs = 1, outputs = 1, rows = 1,

cols = 6, levels_back = 6, arity = 2, kernels = ks())
print("Numerical output: ", ex([1.2]))
print("Symbolic output: ", ex(["x"]))
ex.mutate_active(2)
print("Numerical output: ", ex([1.2]))
print("Symbolic output: ", ex(["x"]))

and produce the output:

Numerical output: [1.7]
Symbolic output: ['((x/(x+x))+x)']
Numerical output: [1.68]
Symbolic output: ['((x*(x+x))-x)']

while in C++ a typical use of the dcgp library achieving a similar result would look like:

#include <dcgp.hpp>
int main() {

dcgp::kernel_set<double> ks({"sum", "diff", "div", "mul"});
dcgp::expression<double> ex(1u, 1u, 1u, 6u, 6u, 2u, ks());
std::cout << "Numerical output: ", ex({1.2})) << "\n";
std::cout << "Symbolic output: ", ex({"x"})) << "\n";
ex.mutate_active(2);
std::cout << "Numerical output: ", ex({1.2})) << "\n";
std::cout << "Symbolic output: ", ex({"x"})) << "\n";

}
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