
policytree: Policy learning via doubly robust empirical
welfare maximization over trees
Erik Sverdrup1, Ayush Kanodia1, Zhengyuan Zhou2, Susan Athey1,
and Stefan Wager1

1 Stanford Graduate School of Business 2 NYU Stern
DOI: 10.21105/joss.02232

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @nhejazi
• @jjharden

Submitted: 20 May 2020
Published: 22 June 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

The problem of learning treatment assignment policies from randomized or observational
data arises in many fields. For example, in personalized medicine, we seek to map patient
observables (like age, gender, heart pressure, etc.) to a treatment choice using a data-driven
rule.
There has recently been a considerable amount of work on statistical methodology for policy
learning, including Manski (2004), Zhao, Zeng, Rush, & Kosorok (2012), Swaminathan &
Joachims (2015), Kitagawa & Tetenov (2018), van der Laan & Luedtke (2015), Luedtke &
van der Laan (2016), Mbakop & Tabord-Meehan (2016), Athey & Wager (2017), Kallus &
Zhou (2018), and Zhou, Athey, & Wager (2018). In particular, Kitagawa & Tetenov (2018)
show that if we only consider policies π restricted to a class Π with finite VC dimension
and have access to data from a randomized trial with n samples, then an empirical welfare
maximization algorithm achieves regret that scales as

√
VC(Π)/n. Athey & Wager (2017)

extend this result to observational studies via doubly robust scoring, and Zhou et al. (2018)
further consider the case with multiple treatment choices (in particular, the regret will depend
on the tree depth, feature space, and number of actions).
The package policytree for R (R Core Team, 2020) implements the multi-action doubly
robust approach of Zhou et al. (2018) in the case where we want to learn policies π that
belong to the class Π of depth-k decision trees. In order to use policytree, the user starts
by specifying a set of doubly robust scores for policy evaluation; the software then carries out
globally optimal weighted search over decision trees.
It is well known that finding an optimal tree of arbitrary depth is NP-hard. However, if we
restrict our attention to trees of depth k, then the problem can be solved in polynomial time.
Here, we implement the global optimization via an exhaustive (unconstrained) tree search that
runs in O(P kNk(logN + D) + PN logN) time, where N is the number of individuals, P
the number of characteristics observed for each individual and D is the number of available
treatment choices (see details below). If an individual’s characteristics only takes on a few
discrete values, the runtime can be reduced by a factor of Nk. Additionally, an optional
approximation parameter lets the user control how many splits to consider.

Sverdrup et al., (2020). policytree: Policy learning via doubly robust empirical welfare maximization over trees. Journal of Open Source
Software, 5(50), 2232. https://doi.org/10.21105/joss.02232

1

https://doi.org/10.21105/joss.02232
https://github.com/openjournals/joss-reviews/issues/2232
https://github.com/grf-labs/policytree
https://doi.org/10.5281/zenodo.3903433
http://arfon.org/
https://github.com/nhejazi
https://github.com/jjharden
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02232

Figure 1: A depth 2 tree fit on data from the National Job Training Partnership Act Study (Bloom
et al., 1997). The reward matrix contains two outcomes: not assigning treatment (action 1), and
assigning treatment, a job training program (action 2). The covariate matrix contains two variables:
a candidate’s previous annual earnings in $1,000 and years of education. Note: the optional package
DiagrammeR is needed to plot trees.

Our package is integrated with the R package grf of Athey, Tibshirani, & Wager (2019),
allowing for a simple workflow that uses random forests to estimate the nuisance components
required to automatically form the doubly robust scores. We also generalize the causal_for
est function from grf to multiple treatment effects with a one vs all encoding described in
Zhou et al. (2018). The following simulation example illustrates this workflow in a setting
with D = 3 actions; here, we write covariates with X, outcomes as Y, and actions as W. Figure
1 shows a tree similarly grown on a dataset considered by Kitagawa & Tetenov (2018).

library(policytree)
X <- matrix(rnorm(2000 * 10), 2000, 10)
W <- sample(c("A", "B", "C"), 2000, replace = TRUE)
Y <- X[,1] + X[,2] * (W == "B") + X[,3] * (W == "C") + runif(2000)
multi.forest <- multi_causal_forest(X = X, Y = Y, W = W)
DR.scores <- double_robust_scores(multi.forest)
tr <- policy_tree(X, DR.scores, depth = 2)
plot(tr)

The core tree search functionality is built in C++ using the Rcpp interface (Eddelbuettel et
al., 2011). This approach to tree search is discussed further by Zhou et al. (2018), who find
it to scale better to large sample size problems than an alternative based on mixed-integer
programming. We also note the R package evtree by Grubinger, Zeileis, & Pfeiffer (2014),
which can be used to heuristically optimize over decision trees via evolutionary search, and
tmle3mopttx by Malenica, Coyle, & van der Laan (2020), for estimating optimal individual
treatments.

Appendix:

Details on tree search

The pseudocode for the tree search is outlined in Algorithm 1 and Algorithm 2. At a high level,
in the main recursive case for k >= 2, the algorithm maintains the data structure sorted_sets
to quickly obtain the sort order of points along all dimensions P for a given split. For each

Sverdrup et al., (2020). policytree: Policy learning via doubly robust empirical welfare maximization over trees. Journal of Open Source
Software, 5(50), 2232. https://doi.org/10.21105/joss.02232

2

https://doi.org/10.21105/joss.02232

of the P × (N − 1) possible splits, for each dimension j all points on the right side are stored
in setR(j). All points on the left side are stored in setL(j). For each split candidate, the
point is moved from the right set to the left set for all dimensions. This proceeds recursively
to enumerate the reward in all possible splits.
The O(PN logN) term arises from the fixed amortized cost of creating the global sort order
once for every sample along all P dimensions. The remaining O(P kNk(logN +D)) term is
obtained by inductively calculating the runtime for increasing depths k.

Algorithm 1: Exact tree search.
In the implementation, parents with identical actions in both leaves are pruned. It also
features an optional approximation parameter than controls the number of splits to con-
sider.
The recursion base case is both at a leaf node (k = 0) as well as at the parent of a leaf
(k = 1) where one can jointly compute the best action in each leaf in O(NPD) by a
dynamic programming style algorithm). Peripheral functions are outlined at the end

1 function tree_search (sorted_sets,Γ, k);
Input : P -vector sorted_sets, N ×D score matrix Γ, tree depth k
Output: The optimal tree, a structure with (left node, right node, total reward, action)

2 if k = 0 then
3 tree.reward, tree.action ← {max, argmax}j∈1,...,d

∑
i∈1,...,N Γij ;

4 tree.left = ∅, tree.right = ∅ ;
5 return tree;
6 end
7 if k = 1 then
8 return tree_search_single_split(sorted_sets,Γ);
9 end

10 best_treeL ← ∅;
11 best_treeR ← ∅;
12 best_reward← −∞;
13 for p=1:P do
14 setsR ← copy(sorted_sets);
15 setsL ← create_empty_sorted_sets();
16 for n=(1: N-1) do
17 samplen ← setsR(p).begin();
18 setsL(p).insert(samplen);
19 setsR(p).erase(samplen);
20 for j ̸= p do
21 setR(j).erase(samplen);
22 setL(j).insert(samplen);
23 end
24 treeL ← tree_search(setsL,Γ, k − 1);
25 treeR ← tree_search(setsR,Γ, k − 1);
26 reward = treeL.reward+ treeR.reward;
27 if best_tree_L = ∅ || reward > best_reward then
28 best_treeL ← treeL;
29 best_treeR ← treeR;
30 best_reward = reward;
31 end
32 end
33 end
34 return tree(best_treeL, best_treeR, best_reward, ∅);

Sverdrup et al., (2020). policytree: Policy learning via doubly robust empirical welfare maximization over trees. Journal of Open Source
Software, 5(50), 2232. https://doi.org/10.21105/joss.02232

3

https://doi.org/10.21105/joss.02232

Algorithm 2: O(NPD) implementation for a single split
1 function tree_search_single_split (sorted_sets,Γ);

Input : P -vector sorted_sets, N ×D score matrix Γ
Output: The optimal tree, a structure with (left node, right node, total reward, action)

2 cum_rewards← array(D)(P)(N) ;
3 for d = (1 : D) do
4 for p = (1 : P) do
5 iter = sorted_sets(p).first();
6 index = iter.index();
7 iter.next();
8 cum_rewards(d)(p)(1)← Γ1index;
9 for n = (2 : N) do

10 index = iter.index();
11 iter.next();
12 cum_rewards(d)(p)(n)← Γindexd + cum_rewards(d)(p)(n− 1);
13 end
14 end
15 end
16 best_rewardL, best_rewardR ← ∅, ∅;
17 best_actionL, best_actionR ← ∅, ∅;
18 for p = (1 : P) do
19 for n = (1 : N) do
20 rewardL, actionL ←

{max, argmax}d∈1,..,Dcum_rewards(d)(p)(n);
21 rewardR, actionR ←

{max, argmax}d∈1,..,Dcum_rewards(D)(p)(N)− cum_rewards(d)(p)(n);
22 end
23 if rewardL + rewardR > best_rewardL + best_rewardR then
24 best_rewardL, best_actionL ← rewardL, actionL;
25 best_rewardR, best_actionR ← rewardR, actionR;
26 end
27 end
28 best_treeL ← tree(∅, ∅, best_rewardL, best_actionL);
29 best_treeR ← tree(∅, ∅, best_rewardR, best_actionR);
30 return tree(best_treeL, best_treeR, best_rewardL + best_rewardR, ∅);

Deriving the running time

Base Case 1: k = 0 (no splits): In this case, all we need to do is calculate the sum of rewards
over each of the available treatment choices D for the N users. Hence, the time complexity is
O(ND).
Base Case 2: k = 1 (1 split): In this case, as we show in Algorithm 2, the time complexity
is O(NPD + NP logN). We first sort all N points along all P dimensions. This accounts
for the NP logN term. Along each dimension, first we keep a cumulative sum of rewards for
each treatment on both sides of every possible split. This takes time O(ND) given the sorted
order on points along that dimension. We can then calculate the best split point given this
sort order, along with the best policy in both splits in time O(ND), as in the pseudocode.
Doing this over all dimensions, we get O(NPD). Combining this with the initial sort, we get
O(NPD +NP logN) = O(NP (logN +D)).
Recursive Case We propose the time complexity for k >= 1 (1 or more splits) to be
O(P kNk(logN +D)). This is satisfied for base case 2 above. For the recursive case, there

Sverdrup et al., (2020). policytree: Policy learning via doubly robust empirical welfare maximization over trees. Journal of Open Source
Software, 5(50), 2232. https://doi.org/10.21105/joss.02232

4

https://doi.org/10.21105/joss.02232

are PN possible split points. For every single split along along every dimension we remove
a sample from a Binary Search Tree and add to another; this takes O(logN) time, and we
do this for each of the P dimensions, leading to time (P logN). Further, for each split, we
recursively call tree_search for depth k − 1, in general there are m1 and m2 points in each
split at the top level such that N = m1+m2. Assuming the recursive expression, the amount
of work done for each split is then
O(P logN +mk−1

1 P k−1(logm1 +D) +mk−1
2 P k−1(logm2 +D))

Note that,
mk−1

1 P k−1(logm1 +D) < mk−1
1 P k−1(logN +D) since m1 < N .

Similarly,
mk−1

2 P k−1(logm2 +D) < mk−1
2 P k−1(logN +D) since m2 < N .

Further,
mk−1

1 P (logN +D) +mk−1
2 P (logN +D) < Nk−1P k−1(logN +D)

since m1 +m2 = N,m1,m2, N > 0.
Combining, the amount of work in each split is upper bounded by
O(P k−1Nk−1(logN + d)).
Since we have PN splits, this leads to a running time of
O(PN(P k−1Nk−1(logN + d)) = O(P kNk(logN + d)).

Algorithm: Peripheral functions for Algorithm 1
1 function create_sorted_sets (X);

Input : N × P covariate matrix X
Output: A length P vector, the jth vector containing all N samples sorted along

dimension j
2 result ← vector(P);
3 for j=1:P do
4 result(j) ← binary_search_tree(j);
5 for i=1:N do
6 result(j).insert(xi);
7 end
8 end
9 return result;

10 function create_empty_sorted_sets ();
Input : P Number of dimensions
Output: A length P vector, the jth vector is empty, but to be sorted along dimension j

11 result ← vector(P);
12 for j=1:P do
13 result(j) ← binary_search_tree(j);
14 end
15 return result;

Sverdrup et al., (2020). policytree: Policy learning via doubly robust empirical welfare maximization over trees. Journal of Open Source
Software, 5(50), 2232. https://doi.org/10.21105/joss.02232

5

https://doi.org/10.21105/joss.02232

References

Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized random forests. The Annals of
Statistics, 47(2), 1148–1178.

Athey, S., & Wager, S. (2017). Efficient policy learning. arXiv preprint arXiv:1702.02896.
Bloom, H. S., Orr, L. L., Bell, S. H., Cave, G., Doolittle, F., Lin, W., Bos, J. M., et al.

(1997). The benefits and costs of jtpa title ii-a programs: Key findings from the national
job training partnership act study. Journal of human resources, 32(3). doi:10.2307/146183

Eddelbuettel, D., François, R., Allaire, J., Ushey, K., Kou, Q., Russel, N., Chambers, J., et al.
(2011). Rcpp: Seamless r and c++ integration. Journal of Statistical Software, 40(8),
1–18.

Grubinger, T., Zeileis, A., & Pfeiffer, K.-P. (2014). Evtree: Evolutionary learning of globally
optimal classification and regression trees in r. Journal of Statistical Software, 61(1),
1–29. doi:10.18637/jss.v061.i01

Kallus, N., & Zhou, A. (2018). Confounding-robust policy improvement. In Advances in
neural information processing systems (pp. 9269–9279).

Kitagawa, T., & Tetenov, A. (2018). Who should be treated? Empirical welfare maximization
methods for treatment choice. Econometrica, 86(2), 591–616. doi:10.3982/ECTA13288

Luedtke, A. R., & van der Laan, M. (2016). Super-learning of an optimal dynamic treat-
ment rule. The international journal of biostatistics, 12(1), 305–332. doi:10.1515/
ijb-2015-0052

Malenica, I., Coyle, J., & van der Laan, M. (2020). Tmle3mopttx: Targeted maximum
likelihood estimation of the mean under optimal individualized treatment. Retrieved from
https://tlverse.org/tmle3mopttx

Manski, C. F. (2004). Statistical treatment rules for heterogeneous populations. Economet-
rica, 72(4), 1221–1246. doi:10.1111/j.1468-0262.2004.00530.x

Mbakop, E., & Tabord-Meehan, M. (2016). Model selection for treatment choice: Penalized
welfare maximization. arXiv preprint arXiv:1609.03167.

R Core Team. (2020). R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.
org/

Swaminathan, A., & Joachims, T. (2015). Batch learning from logged bandit feedback
through counterfactual risk minimization. The Journal of Machine Learning Research,
16(1), 1731–1755.

van der Laan, M., & Luedtke, A. R. (2015). Targeted learning of the mean outcome under
an optimal dynamic treatment rule. Journal of causal inference, 3(1), 61–95.

Zhao, Y., Zeng, D., Rush, A. J., & Kosorok, M. R. (2012). Estimating individualized treatment
rules using outcome weighted learning. Journal of the American Statistical Association,
107(499), 1106–1118.

Zhou, Z., Athey, S., & Wager, S. (2018). Offline multi-action policy learning: Generalization
and optimization. arXiv preprint arXiv:1810.04778.

Sverdrup et al., (2020). policytree: Policy learning via doubly robust empirical welfare maximization over trees. Journal of Open Source
Software, 5(50), 2232. https://doi.org/10.21105/joss.02232

6

https://doi.org/10.2307/146183
https://doi.org/10.18637/jss.v061.i01
https://doi.org/10.3982/ECTA13288
https://doi.org/10.1515/ijb-2015-0052
https://doi.org/10.1515/ijb-2015-0052
https://tlverse.org/tmle3mopttx
https://doi.org/10.1111/j.1468-0262.2004.00530.x
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.21105/joss.02232

	Summary
	Appendix:
	Details on tree search
	Deriving the running time

	References

