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Summary

uravu offers an easy to use interface for data analysis using Bayesian modelling in the Python
programming language, aiming to make Bayesian modelling as easy to use as the scipy.op
timize.curve_fit() method. This software acts to lower the barrier of entry to the use of
packages such as:

= scipy: for maximum likelihood estimation (Virtanen et al., 2020)

= emcee: for Markov chain Monte Carlo investigation of posterior probabilities (Foreman-
Mackey et al., 2019)

= dynesty: for nested sampling (Skilling, 2006) and dynamic nested sampling (Higson,
Handley, Hobson, & Lasenby, 2019) of posterior probabilities and estimation of the
Bayesian evidence (Speagle, 2020).

In addition to standard normal ordinate uncertainties, uravu also adds the ability to investigate
non-normal ordinate value distributions, with the Distribution class and its integration into
the Relationship class. Furthermore, uravu provides the functionality to create simple,
publication-quality plots of relationships, data, and distributions with matplotlib (Hunter,
2007) and corner (Foreman-Mackey, 2016).

Alongside API information, the uravu documentation offers brief tutorials covering many
aspects of the package. This allows those unfamiliar with Bayesian modelling to get to grips
with these important tools for data analysis. While Bayesian data modelling is possible with
packages such as emcee (Foreman-Mackey et al., 2019), dynesty (Speagle, 2020), and
PyMC3 (Salvatier, Wiecki, & Fonnesbeck, 2016), to the authors’ knowledge uravu is unique
in offering a simple to use interface, where it is not necessary to explicitly define functions
for the likelihood or prior probabilities (though custom priors are possible). uravu is being
actively applied to scientific problems, such as data reduction at large scale scientific facilities
and the modelling of diffusion in battery materials.

Statement of Need

The Python language has a large number of powerful packages related to the application of
Bayesian modelling. However, to apply these methods to their problems, scientific users need
a straightforward environment. For maximum-likelihood modelling, this is achieved using the
scipy.optimize.curve_fit() method for many users, but, to the best of the authors’
knowledge, there is no equivalent method for Bayesian modelling. uravu fills this gap by
offering easy access to powerful Python packages to perform Markov chain Monte Carlo and
nested sampling, that is capable of handling uncertainties with any distribution. Furthermore,
the tutorials, available as documentation online, allow users to become more comfortable with
the use of Bayesian methods for data modelling.
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