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Summary

Here we introduce VlaPy: a one-spatial-dimension, one-velocity-dimension (1D-1V), Eulerian
Vlasov-Poisson-Fokker-Planck (VPFP) simulation code written in Python.
The Vlasov-Poisson-Fokker-Planck system of equations is commonly used to study plasma and
fluid physics in a broad set of topical environments, ranging from space physics, to laboratory-
created plasmas for fusion applications (Betti & Hurricane, 2016; Chen, Klein, & Howes, 2019;
Fasoli et al., 2016; Ongena, Koch, Wolf, & Zohm, 2016). More specifically, the Vlasov-Poisson
system of equations is typically employed to model collisionless plasmas. The Fokker-Planck
operator can be introduced into this system to represent the effect of collisions. The primary
advantage of this scheme is that instead of relying on numerical diffusion to smooth small-
scale structures that arise when modeling collisionless plasmas, the Fokker-Planck operator
enables a physics-based smoothing mechanism.
Our implementation is based on finite-difference and pseudo-spectral methods. At the lowest
level, VlaPy evolves a two-dimensional (2D) grid according to this set of coupled partial
integro-differential equations over time. In VlaPy, the simulation dynamics can be initialized
through user-specified initial conditions or external forces.

Statement of Need

The 1D-1V VPFP equation set solved here has been applied in research on laser-plasma in-
teractions in the context of inertial fusion (Banks, Brunner, Berger, & Tran, 2016; Fahlen,
Winjum, Grismayer, & Mori, 2009), plasma-based accelerators (Thomas, 2016), space physics
(Chen et al., 2019), and fundamental plasma physics (Heninger & Morrison, 2018; Pezzi,
Valentini, & Veltri, 2016). While there are VPFP software libraries which are available in
academic settings, research laboratories, and industry (Banks, Brunner, Berger, Arrighi, &
Tran, 2017; Joglekar et al., 2018), the community has yet to benefit from a simple-to-read,
open-source Python implementation. This lack of capability is currently echoed in conversa-
tions within the PlasmaPy (PlasmaPy Community et al., 2018) community (PlasmaPy is a
collection of open-source plasma physics resources). Our aim with VlaPy is to take a step
towards filling this need for a research and educational tool in the open-source community.
VlaPy is intended to help students learn fundamental concepts and help researchers discover
novel physics and applications in plasma physics, fluid physics, computational physics, and
numerical methods. It is also designed to provide a science-accessible introduction to industry
and software engineering best-practices, including unit and integrated testing, and extensible
and maintainable code.
The details of the VlaPy implementation are provided in the following sections.
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Equations

The Vlasov-Poisson-Fokker-Planck system can be decomposed into four components. These
components, represented using normalized units, are ṽ = v/vth, t̃ = t/ω−1

p , x̃ = x/λD,
m̃ = m/me, q̃ = q/e, m̃ = m/me, Ẽ = eE/mevthωp, f̃ = f/nev

−3
th where vth is the

thermal velocity, ωp is the electron plasma frequency, me is the electron mass, λD is the
Debye length, and e is the elementary charge. The Fourier transform operator is represented
by F and the subscript to the operator indicates the dimension of the transform. In what
follows, we have omitted the tilde for brevity.

Vlasov Equation

The normalized, non-relativistic (γ = 1) Vlasov equation for electrons is given by
∂f

∂t
+ v

∂f

∂x
− E(x)

∂f

∂v
= 0,

where f = f(x, v, t) is the electron velocity distribution function.
We use operator splitting to advance the time-step (Strang, 1968). Each one of those opera-
tors is then integrated pseudo-spectrally using the following methodology.
We use the Fourier expansions of the distribution function, which are given by

f(xl, vj) =
∑

f̂x(kx, vj) exp(ikxxl) =
∑

f̂v(xl, kv) exp(ikvvj).

We first discretize f(x, v, t) = fn(xl, vj), and then perform a Fourier expansion in x̂ for each
grid value of v.
This gives

fn(xl, vj) =
∑

f̂n
x (kx, vj) exp(ikxxj)

which is substituted into the Fourier transform of the advection operator in x̂, as given by

Fx

[
∂f

∂t
= −v

∂f

∂x

]
.

This process enables the decoupling of x̂ and v̂ grids from the time dimension and allows
us to write an Ordinary Differential Equation in time for the discretized distribution function
f̂x

n
(kx, vj). This is given by

d
[
f̂x

n
(kx, vj)

]
f̂x

n
(kx, vj)

= −vj (ikx) dt.

Next, we solve for the change in the plasma distribution function, integrate in time, and
evaluate the integral at f̂x

n and f̂x
n+1 which gives

f̂x
n+1

(kx, vj) = exp(−ikx vj∆t) f̂x
n
(kx, vj).

The E∂f/∂v term is evolved similarly using

f̂v
n+1

(xl, kv) = exp(−ikv El∆t) f̂v
n
(xl, kv).

We have implemented a simple Leapfrog scheme as well as a 4th order integrator called the
Position-Extended-Forest-Ruth-Like Algorithm (PEFRL) (Omelyan, Mryglod, & Folk, 2002)
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Tests

The implementation of this equation is tested in the integrated tests section.

Poisson Equation

The normalized Poisson equation is simply

∇2Φ = −ρ

Because the ion species are effectively static and form a charge-neutralizing background to
the electron dynamics, we can express the Poisson equation as

−∇E = −ρnet = −(1− ρe)

This is justifed by the assumption that the relevant time-scales are short compared to the
time-scale associated to ion motion.
In one spatial dimension, this can be expressed as

∂

∂x
E(x) = 1−

∫
f(x, v) dv

and the discretized version that is solved is

E(xi)
n = F−1

x

Fx

(
1−

∑j
fn(xi, vj)∆v

)
ikx



Integrated Code Testing

Unit tests are provided for this operator to validate its performance and operation under the
above assumptions. These are simply unit tests against analytical solutions of integrals of
periodic functions. They can be found in tests/test_fieldsolver.py.
Below, we provide an example illustration of this validation. The code is provided in notebo
oks/test_poisson.ipynb
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Testing the Field Solver

Fokker-Planck Equation

We have implemented two simplified versions of the full Fokker-Planck operator (Dougherty,
1964; Lenard & Bernstein, 1958).
The first of these implementations (LB) has the governing equation given by(

δf

δt

)
coll

= ν
∂

∂v

(
vf + v20

∂f

∂v

)
,

where
v20 =

∫
v2f(x, v) dv,

is the thermal velocity of the distribution.
The second of these implementations (DG) has a governing equation given by(

δf

δt

)
coll

= ν
∂

∂v

(
(v − v)f + v2t

∂f

∂v

)
,

where
v =

∫
vf(x, v) dv,

is the mean velocity of the distribution and

v2t =

∫
(v − v)2f(x, v) dv,
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is the thermal velocity of the shifted distribution.
The second implementation is an extension of the first, and extends momentum conservation
for distributions that have a non-zero mean velocity.
We discretize this backward-in-time, centered-in-space. This procedure results in the time-step
scheme given by

fn =
[
LD × v̄j+1f

n+1
j+1 +DI × fn+1

j + UD × v̄j−1f
n+1
j−1

]
.

LD = ∆tν

(
−

v20,t
∆v2

− 1

2∆v

)

DI =

(
1 + 2∆tν

v20,t
∆v2

)

UD = ∆tν

(
−

v20,t
∆v2

+
1

2∆v

)
where v̄ = v or v̄ = v − v depending on the implementation.
This forms a tridiagonal system of equations that can be directly inverted.

Integrated Code Testing

Unit tests are provided for this operator. They can be found in tests/test_lb.py and
tests/test_dg.py. The unit tests ensure that

1. The operator does not impact a Maxwell-Boltzmann distribution already satisfying vth =
v0.

2. The LB operator conserves number density, momentum, and energy when initialized
with a zero mean velocity.

3. The DG operator conserves number density, momentum, and energy when initialized
with a non-zero mean velocity.

The notebooks/test_fokker_planck.ipynb notebook contains illustrations and examples
for these tests. Below, we show results from some of the tests for illustrative purposes.
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Testing if the Maxwellian is a steady-state solution of the implementation of the collision operator
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Testing for density, momentum, and energy conservation
Density conservation error = 8.31e-09

Momentum conservation error = -2.5e-16
Energy conservation error = 3.02e-07

4 3 2 1 0 1 2 3 4
Velocity (vth)

0.0

0.1

0.2

0.3

0.4

f

initial
final

4 3 2 1 0 1 2 3 4
Velocity (vth)

10 4

10 3

10 2

10 1

f

initial
final

Testing for density, momentum, and energy conservation for non-zero 
mean velocity distribution with the Lenard-Bernstein operator

Density conservation error = 1.08e-07
Momentum conservation error = 4.76e-02

Energy conservation error = 3.93e-06
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Testing for density, momentum, and energy conservation for non-zero 
mean velocity distribution with the Dougherty operator

Density conservation error = 7.04e-08
Momentum conservation error = 4.23e-07

Energy conservation error = 2.55e-06

We see from the above figures that the distribution relaxes to a Maxwellian. Depending on the
implementation, certain characteristics of momentum conservation are enforced or avoided.

Integrated Code Tests against Plasma Physics: Electron
Plasma Waves and Landau Damping

Landau Damping is one of the most fundamental phenomena in plasma physics. An extensive
review is provided in (Ryutov, 1999).
Plasmas can support electrostatic oscillations. The oscillation frequency is given by the elec-
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trostatic electron plasma wave (EPW) dispersion relation. When a wave of sufficiently small
amplitude is driven at the resonant wave-number and frequency pairing, there is a resonant
exchange of energy between the plasma and the electric field, and the electrons can damp the
electric field. The damping rates, as well as the resonant frequencies, are given in (Canosa,
1973).
In the VlaPy simulation code, we have verified that the known damping rates for Landau
Damping are reproduced, for a few different wave-numbers. This is shown in notebooks/la
ndau_damping.ipynb.
We include validation against this phenomenon as an automated integrated test. The tests
can be found in tests/test_landau_damping.py

Below, we also illustrate a manual validation of this phenomenon through the fully integrated
workflow of running a simulation on a local machine and sending the results to the MLFlow-
driven logging mechanism. After running a properly initialized simulation, we show that the
damping rate of an electron plasma wave with k = 0.3 is reproduced accurately through the
UI. This can also be computed manually (please see the testing code for details).

To run the entire testing suite, make sure pytest is installed, and call pytest from the root
folder for the repository. Individual files can also be run by calling pytest tests/<test_fi
lename>.py.
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Example Run Script For Landau Damping

import numpy as np
from vlapy import manager, initializers
from vlapy.infrastructure import mlflow_helpers, print_to_screen
from vlapy.diagnostics import landau_damping

if __name__ == "__main__":
# Pick a random wavenumber
k0 = np.random.uniform(0.3, 0.4, 1)[0]

# This is a collisionless simulation. Provide float value if collisions should be simulated
log_nu_over_nu_ld = None

# This initializes the default parameters
all_params_dict = initializers.make_default_params_dictionary()

# This calculates the roots to the EPW dispersion relation given the wavenumber
all_params_dict = initializers.specify_epw_params_to_dict(

k0=k0, all_params_dict=all_params_dict
)

# This specifies the collision frequency given nu_ld
all_params_dict = initializers.specify_collisions_to_dict(

log_nu_over_nu_ld=log_nu_over_nu_ld, all_params_dict=all_params_dict
)

# The solvers can be chosen here
all_params_dict["vlasov-poisson"]["time"] = "leapfrog"
all_params_dict["vlasov-poisson"]["edfdv"] = "exponential"
all_params_dict["vlasov-poisson"]["vdfdx"] = "exponential"

all_params_dict["fokker-planck"]["type"] = "lb"
all_params_dict["fokker-planck"]["solver"] = "batched_tridiagonal"

# The pulse shape can be chosen here
pulse_dictionary = {

"first pulse": {
"start_time": 0,
"t_L": 6,
"t_wL": 2.5,
"t_R": 20,
"t_wR": 2.5,
"w0": all_params_dict["w_epw"],
"a0": 1e-7,
"k0": k0,

}
}

# Mlflow experiment name and location
mlflow_exp_name = "landau-damping"

# Either an IP address for your MLflow server or "local" if no server specified
uris = {
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"tracking": "local",
}

# Start!
that_run = manager.start_run(

all_params=all_params_dict,
pulse_dictionary=pulse_dictionary,
diagnostics=landau_damping.LandauDamping(

vph=all_params_dict["v_ph"],
wepw=all_params_dict["w_epw"],

),
uris=uris,
name=mlflow_exp_name,

)

# Assess if the simulation results match the actual damping rate
print(

mlflow_helpers.get_this_metric_of_this_run("damping_rate", that_run),
all_params_dict["nu_ld"],

)
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