
Surprise: A Python library for recommender systems
Nicolas Hug1

1 Columbia University, Data Science Institute, New York City, New York, United States of America
DOI: 10.21105/joss.02174

Software
• Review
• Repository
• Archive

Editor: Yuan Tang
Reviewers:

• @sara-02
• @ejhigson

Submitted: 02 March 2020
Published: 05 August 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Recommender systems aim at providing users with a list of recommendations of items that
a service offers. For example, a video streaming service will typically rely on a recommender
system to propose a personalized list of movies or series to each of its users. A typical
problem in recommendation is that of rating prediction: given an incomplete dataset of user-
item interations which take the form of numerical ratings (e.g. on a scale from 1 to 5), the
goal is to predict the missing ratings for all remaining user-item pairs.
Surprise is a Python library for building and analyzing rating prediction algorithms. It
was designed to closely follow the scikit-learn API (Buitinck et al., 2013; Pedregosa et
al., 2011), which should be familiar to users acquainted with the Python machine learning
ecosystem.
Surprise provides a collection of estimators (or prediction algorithms) for rating prediction.
Among others, classical algorithms are implemented such as the main similarity-based algo-
rithms (Aggarwal & others, 2016), as well as algorithms based on matrix factorization like
SVD (Koren, Bell, & Volinsky, 2009) or NMF (Lee & Seung, 2001). It also supports tools
for model evaluation like cross-validation iterators and built-in metrics à la scikit-learn, as
well as tools for model selection and automatic hyper-parameter search, namely grid search
and randomized search. Thanks to simple primitives and a light API, users can also implement
their own recommendation technique with a minimal amount of code.
Classical datasets such as the MovieLens datasets (Harper & Konstan, 2015) are directly
available in the package, but user-defined datasets are also supported either by loading csv
files, or by using pandas dataframes (McKinney, 2010).
Surprise is mainly written in Python, while the computationally intensive parts are optimized
with Cython (Behnel et al., 2011). Internally, Surprise relies on built-in Python data
structures (mainly dictionaries) as well as numpy arrays (Walt, Colbert, & Varoquaux, 2011).
Surprise was designed to be useful to researchers who want to quickly explore new rec-
ommendation ideas by supporting the creation of custom prediction algorithms, but can also
serve as a learning resource for students and less experienced users thanks to its detailed
documentation.
Other popular recommendation libraries with similar functionalities include LibRec (Guo,
Zhang, Sun, & Yorke-Smith, n.d.) (Java) or MyMediaLite (Gantner, Rendle, Freudenthaler,
& Schmidt-Thieme, 2011) (C#). In Python, OpenRec (Yang, Bagdasaryan, Gruenstein, Hsieh,
& Estrin, 2018) and Spotlight (Kula, 2017) support neural-network inspired algorithms;
implicit1 is specialized in implicit feedback recommendation, and LightFM (Kula, 2015)
implements a hybrid algorithm based on matrix factorization. To the best of our knowledge,
Surprise is the only library to provide a scikit-learn like API with model selection tools,
and with a focus on explicit rating prediction.

1https://github.com/benfred/implicit

Hug, N., (2020). Surprise: A Python library for recommender systems. Journal of Open Source Software, 5(52), 2174. https://doi.org/10.
21105/joss.02174

1

https://doi.org/10.21105/joss.02174
https://github.com/openjournals/joss-reviews/issues/2174
https://github.com/NicolasHug/Surprise
https://doi.org/10.5281/zenodo.3959188
https://terrytangyuan.github.io/about/
https://github.com/sara-02
https://github.com/ejhigson
http://creativecommons.org/licenses/by/4.0/
https://github.com/benfred/implicit
https://doi.org/10.21105/joss.02174
https://doi.org/10.21105/joss.02174

Example

Here is a simple example showing how to (down)load a dataset, split it into five folds for
cross-validation, and compute the Mean Average Error (MAE) and the Root Mean Squared
Error (RMSE) of the SVD algorithm.

from surprise import SVD
from surprise import Dataset
from surprise.model_selection import cross_validate

Load the movielens-100k dataset (download it if needed).
data = Dataset.load_builtin('ml-100k')

Use the famous SVD algorithm, with default parameters.
algo = SVD()

Run 5-fold cross-validation and print results. They can also be returned.
cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)

printed output:
Evaluating RMSE, MAE of algorithm SVD on 5 split(s).
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std
RMSE 0.9311 0.9370 0.9320 0.9317 0.9391 0.9342 0.0032
MAE 0.7350 0.7375 0.7341 0.7342 0.7375 0.7357 0.0015
Fit time 6.53 7.11 7.23 7.15 3.99 6.40 1.23
Test time 0.26 0.26 0.25 0.15 0.13 0.21 0.06

Acknowledgements

We are grateful to all the people who have contributed to the software, with special thanks to
Maher Malaeb and David Stevens for the hyper-parameter searches, and to Lauriane Ducasse
for the logo design.

References

Aggarwal, C. C., & others. (2016). Recommender systems (Vol. 1). Springer. doi:10.1007/
978-3-319-29659-3

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2011). Cython:
The best of both worlds. Computing in Science & Engineering, 13(2), 31–39. doi:10.1109/
MCSE.2010.118

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., et
al. (2013). API design for machine learning software: Experiences from the scikit-learn
project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning
(pp. 108–122).

Gantner, Z., Rendle, S., Freudenthaler, C., & Schmidt-Thieme, L. (2011). MyMediaLite:
A Free Recommender System Library. In Proceedings of the 5th ACM Conference on
Recommender Systems (RecSys 2011).

Guo, G., Zhang, J., Sun, Z., & Yorke-Smith, N. (n.d.). LibRec: A Java Library for Recom-
mender Systems.

Hug, N., (2020). Surprise: A Python library for recommender systems. Journal of Open Source Software, 5(52), 2174. https://doi.org/10.
21105/joss.02174

2

https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.21105/joss.02174
https://doi.org/10.21105/joss.02174

Harper, F. M., & Konstan, J. A. (2015). The Movielens Datasets: History and Context. ACM
Transactions on Interactive Intelligent Systems (TIIS), 5(4), 1–19.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender
systems. Computer, 42(8), 30–37.

Kula, M. (2015). Metadata Embeddings for User and Item Cold-start Recommendations.
In T. Bogers & M. Koolen (Eds.), Proceedings of the 2nd Workshop on New Trends
on Content-Based Recommender Systems co-located with 9th ACM Conference on Rec-
ommender Systems (RecSys 2015), Vienna, Austria, September 16-20, 2015., CEUR
workshop proceedings (Vol. 1448, pp. 14–21). CEUR-WS.org. Retrieved from http:
//ceur-ws.org/Vol-1448/paper4.pdf

Kula, M. (2017). Spotlight. https://github.com/maciejkula/spotlight; GitHub.
Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In

Advances in Neural Information Processing Systems (pp. 556–562).
McKinney, W. (2010). Data Structures for Statistical Computing in Python. In S. van der

Walt & J. Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp.
51–56). doi:10.25080/Majora-92bf1922-00a

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
et al. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.

Walt, S. van der, Colbert, S. C., & Varoquaux, G. (2011). The numpy array: A structure
for efficient numerical computation. Computing in Science & Engineering, 13(2), 22–30.
doi:10.1109/MCSE.2011.37

Yang, L., Bagdasaryan, E., Gruenstein, J., Hsieh, C.-K., & Estrin, D. (2018). OpenRec:
A Modular Framework for Extensible and Adaptable Recommendation Algorithms. In
Proceedings of the Eleventh ACM International Conference on Web Search and Data
Mining, WSDM ’18 (pp. 664–672). New York, NY, USA: Association for Computing
Machinery. doi:10.1145/3159652.3159681

Hug, N., (2020). Surprise: A Python library for recommender systems. Journal of Open Source Software, 5(52), 2174. https://doi.org/10.
21105/joss.02174

3

http://ceur-ws.org/Vol-1448/paper4.pdf
http://ceur-ws.org/Vol-1448/paper4.pdf
https://github.com/maciejkula/spotlight
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1145/3159652.3159681
https://doi.org/10.21105/joss.02174
https://doi.org/10.21105/joss.02174

	Summary
	Example
	Acknowledgements
	References

