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Summary

Recommender systems aim at providing users with a list of recommendations of items that
a service offers. For example, a video streaming service will typically rely on a recommender
system to propose a personalized list of movies or series to each of its users. A typical
problem in recommendation is that of rating prediction: given an incomplete dataset of user-
item interations which take the form of numerical ratings (e.g. on a scale from 1 to 5), the
goal is to predict the missing ratings for all remaining user-item pairs.
Surprise is a Python library for building and analyzing rating prediction algorithms. It
was designed to closely follow the scikit-learn API (Buitinck et al., 2013; Pedregosa et
al., 2011), which should be familiar to users acquainted with the Python machine learning
ecosystem.
Surprise provides a collection of estimators (or prediction algorithms) for rating prediction.
Among others, classical algorithms are implemented such as the main similarity-based algo-
rithms (Aggarwal & others, 2016), as well as algorithms based on matrix factorization like
SVD (Koren, Bell, & Volinsky, 2009) or NMF (Lee & Seung, 2001). It also supports tools
for model evaluation like cross-validation iterators and built-in metrics à la scikit-learn, as
well as tools for model selection and automatic hyper-parameter search, namely grid search
and randomized search. Thanks to simple primitives and a light API, users can also implement
their own recommendation technique with a minimal amount of code.
Classical datasets such as the MovieLens datasets (Harper & Konstan, 2015) are directly
available in the package, but user-defined datasets are also supported either by loading csv
files, or by using pandas dataframes (McKinney, 2010).
Surprise is mainly written in Python, while the computationally intensive parts are optimized
with Cython (Behnel et al., 2011). Internally, Surprise relies on built-in Python data
structures (mainly dictionaries) as well as numpy arrays (Walt, Colbert, & Varoquaux, 2011).
Surprise was designed to be useful to researchers who want to quickly explore new rec-
ommendation ideas by supporting the creation of custom prediction algorithms, but can also
serve as a learning resource for students and less experienced users thanks to its detailed
documentation.
Other popular recommendation libraries with similar functionalities include LibRec (Guo,
Zhang, Sun, & Yorke-Smith, n.d.) (Java) or MyMediaLite (Gantner, Rendle, Freudenthaler,
& Schmidt-Thieme, 2011) (C#). In Python, OpenRec (Yang, Bagdasaryan, Gruenstein, Hsieh,
& Estrin, 2018) and Spotlight (Kula, 2017) support neural-network inspired algorithms;
implicit1 is specialized in implicit feedback recommendation, and LightFM (Kula, 2015)
implements a hybrid algorithm based on matrix factorization. To the best of our knowledge,
Surprise is the only library to provide a scikit-learn like API with model selection tools,
and with a focus on explicit rating prediction.

1https://github.com/benfred/implicit
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Example

Here is a simple example showing how to (down)load a dataset, split it into five folds for
cross-validation, and compute the Mean Average Error (MAE) and the Root Mean Squared
Error (RMSE) of the SVD algorithm.

from surprise import SVD
from surprise import Dataset
from surprise.model_selection import cross_validate

# Load the movielens-100k dataset (download it if needed).
data = Dataset.load_builtin('ml-100k')

# Use the famous SVD algorithm, with default parameters.
algo = SVD()

# Run 5-fold cross-validation and print results. They can also be returned.
cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)

# printed output:
# Evaluating RMSE, MAE of algorithm SVD on 5 split(s).
# Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std
# RMSE 0.9311 0.9370 0.9320 0.9317 0.9391 0.9342 0.0032
# MAE 0.7350 0.7375 0.7341 0.7342 0.7375 0.7357 0.0015
# Fit time 6.53 7.11 7.23 7.15 3.99 6.40 1.23
# Test time 0.26 0.26 0.25 0.15 0.13 0.21 0.06
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