
Matching: A Python library for solving matching games
Henry Wilde1, Vincent Knight1, and Jonathan Gillard1

1 School of Mathematics, Cardiff University
DOI: 10.21105/joss.02169

Software
• Review
• Repository
• Archive

Editor: Viviane Pons
Reviewers:

• @igarizio
• @mbdemoraes

Submitted: 28 February 2020
Published: 17 April 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Matching games allow for the allocation of resources and partnerships in a fair way. Typically,
a matching game is defined by two sets of players that each have preferences over at least
some of the elements of the other set. The objective of the game is then to find a mapping
between the sets of players in which everyone is happy enough with their match.
One of the most ubiquitous matching games is the Stable Marriage Problem (SM). In SM,
there are two distinct player sets of size N : a set of suitors S and a set of reviewers R. Each
suitor must strictly rank all of the reviewers, and vice versa. This arrangement of suitors,
reviewers, and their preferences is called a game of size N (Gale & Shapley, 1962).
In SM, a matching is any bijection M between S and R, and it is considered to be stable
(i.e. no one has a reason to modify their current match) if it contains no blocking pairs. A
blocking pair is defined as any pair (s, r) ∈ S × R that would rather be matched to one
another than their current match. This definition differs between matching games but the
spirit is the same in that a pair blocks a matching if their envy is mutually rational. Irrational
envy would be where one player wishes to be matched to another over their current match
but the other player does not (or cannot) reciprocate.
Consider the game of size three shown in Figure 1 as an edgeless graph with suitors on the left
and reviewers on the right. Beside each vertex is the name of the player and their associated
ranking of the complementary set’s elements.

A : (D,E, F )

B : (D,F,E)

C : (F,D,E)

D : (B,C,A)

E : (A,C,B)

F : (C,B,A)

Figure 1: A game of size three.

Gale & Shapley (1962) presented an algorithm for finding a unique, stable and suitor-optimal
matching to any instance of SM. The matching this algorithm produces is shown in Figure 2.

Wilde et al., (2020). Matching: A Python library for solving matching games. Journal of Open Source Software, 5(48), 2169. https:
//doi.org/10.21105/joss.02169

1

https://doi.org/10.21105/joss.02169
https://github.com/openjournals/joss-reviews/issues/2169
https://github.com/daffidwilde/matching
https://doi.org/10.5281/zenodo.3755304
https://www.lri.fr/~pons/en/
https://github.com/igarizio
https://github.com/mbdemoraes
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02169
https://doi.org/10.21105/joss.02169


A : (D,E, F )

B : (D,F,E)

C : (F,D,E)

D : (B,C,A)

E : (A,C,B)

F : (C,B,A)

Figure 2: A stable, suitor-optimal solution.

Using Matching, this matching can be computed as follows:

>>> from matching.games import StableMarriage
>>> suitor_preferences = {
... "A": ["D", "E", "F"], "B": ["D", "F", "E"], "C": ["F", "D", "E"]
... }
>>> reviewer_preferences = {
... "D": ["B", "C", "A"], "E": ["A", "C", "B"], "F": ["C", "B", "A"]
... }
>>> game = StableMarriage.create_from_dictionaries(
... suitor_preferences, reviewer_preferences
... )
>>> game.solve()
{A: E, B: D, C: F}

While it is relatively easy to find solutions to games like this with pen and paper, instances of
other matching games tend to have more players than this and require the use of software to
be solved in reasonable time.

Statement of Need

Matching games have applications in many fields where relationships between rational agents
must be managed. Some example applications include: being able to inform on healthcare
finance policy (Agarwal, 2017); helping to reduce the complexity of automated wireless com-
munication networks (Bayat, Li, Song, & Han, 2016); and education infrastructure (Chiaran-
dini, Fagerberg, & Gualandi, 2019). Thus, having access to software implementations of
algorithms that are able to solve such games is essential.
The only current adversary to Matching is MatchingR (Tilly & Janetos, 2018). MatchingR
is a package written in C++ with an R interface and its content overlaps well with that of
Matching. However, the lack of a Python interface makes it less relevant to researchers and
other users as Python’s popularity grows both in academia and industry.
Matching is a Python library that relies on one core library from the standard scientific Python
stack – NumPy (Oliphant, n.d.) – that currently implements algorithms for four types of
matching games:

• the stable marriage problem (SM) (Gale & Shapley, 1962);

Wilde et al., (2020). Matching: A Python library for solving matching games. Journal of Open Source Software, 5(48), 2169. https:
//doi.org/10.21105/joss.02169

2

https://doi.org/10.21105/joss.02169
https://doi.org/10.21105/joss.02169


• the hospital-resident assignment problem (HR) (Gale & Shapley, 1962; Roth, 1984);
• the student-project allocation problem (SA) (Abraham, Irving, & Manlove, 2007);
• the stable roommates problem (SR) (Irving, 1985).

MatchingR implements all of these except SA but also implements an algorithm for the
indivisible goods trading problem.
In addition to this, Matching has been developed to a high degree of best practice in re-
search software development (Jiménez et al., 2017), and is thoroughly documented: match-
ing.readthedocs.io. The documentation has been written to maximise its effect as a resource
for learning about matching games as well as for the software itself. Furthermore, the software
is automatically tested using example, integration, and property-based unit tests with 100%
coverage. The current version of Matching has also been archived on Zenodo (The Matching
library developers, 2020); as has all of the data used in the documentation tutorials.
Matching has been designed to be used as a research tool and to aid in the education of game
theory. It is currently being used by a number of undergraduate students and postgraduate
researchers in universities around the world, and has been used to massively streamline the final
year project allocation process for one of the largest schools at Cardiff University (as an instance
of SA). Furthermore, Matching proved to be instrumental in the practical implementation of
a novel initialisation method for a categoric clustering algorithm (Wilde, Knight, & Gillard,
2020). With Matching being written in Python, this tool is widely accessible by programmers
and non-programmers alike as a readable, portable, and reproducible piece of software.

References

Abraham, D. J., Irving, R. W., & Manlove, D. F. (2007). Two algorithms for the student-
project allocation problem. Journal of Discrete Algorithms, 5(1), 73–90. doi:10.1016/j.
jda.2006.03.006

Agarwal, N. (2017). Policy analysis in matching markets. American Economic Review, 107(5),
246–50. doi:10.1257/aer.p20171112

Bayat, S., Li, Y., Song, L., & Han, Z. (2016). Matching theory: Applications in wireless
communications. IEEE Signal Processing Magazine, 33, 103–122. doi:10.1109/MSP.
2016.2598848

Chiarandini, M., Fagerberg, R., & Gualandi, S. (2019). Handling preferences in student-
project allocation. Annals of Operations Research, 275(1), 39–78. doi:10.1007/
s10479-017-2710-1

Gale, D., & Shapley, L. S. (1962). College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1), 9–15. doi:10.2307/2312726

Irving, R. W. (1985). An efficient algorithm for the “stable roommates” problem. Journal of
Algorithms, 6(4), 577–595. doi:10.1016/0196-6774(85)90033-1

Jiménez, R. C., Kuzak, M., Alhamdoosh, M., Barker, M., Batut, B., Borg, M., Capella-
Gutierrez, S., et al. (2017). Four simple recommendations to encourage best practices in
research software. F1000Research, 6, ELIXIR–876. doi:10.12688/f1000research.11407.1

Oliphant, T. (n.d.). NumPy: A guide to NumPy. USA: Trelgol Publishing. Retrieved from
http://www.numpy.org/

Roth, A. (1984). The evolution of the labor market for medical interns and residents: A case
study in game theory. Journal of Political Economy, 92(6), 991–1016. doi:10.1086/261272

The Matching library developers. (2020). Matching: V1.3. doi:10.5281/zenodo.3751325

Wilde et al., (2020). Matching: A Python library for solving matching games. Journal of Open Source Software, 5(48), 2169. https:
//doi.org/10.21105/joss.02169

3

https://matching.readthedocs.io
https://matching.readthedocs.io
https://doi.org/10.1016/j.jda.2006.03.006
https://doi.org/10.1016/j.jda.2006.03.006
https://doi.org/10.1257/aer.p20171112
https://doi.org/10.1109/MSP.2016.2598848
https://doi.org/10.1109/MSP.2016.2598848
https://doi.org/10.1007/s10479-017-2710-1
https://doi.org/10.1007/s10479-017-2710-1
https://doi.org/10.2307/2312726
https://doi.org/10.1016/0196-6774(85)90033-1
https://doi.org/10.12688/f1000research.11407.1
http://www.numpy.org/
https://doi.org/10.1086/261272
https://doi.org/10.5281/zenodo.3751325
https://doi.org/10.21105/joss.02169
https://doi.org/10.21105/joss.02169


Tilly, J., & Janetos, N. (2018). MatchingR: Matching algorithms in R and C++. GitHub
repository. GitHub. Retrieved from https://github.com/jtilly/matchingR

Wilde, H., Knight, V., & Gillard, J. (2020). A novel initialisation based on hospital-resident
assignment for the k-modes algorithm. Retrieved from http://arxiv.org/abs/2002.02701

Wilde et al., (2020). Matching: A Python library for solving matching games. Journal of Open Source Software, 5(48), 2169. https:
//doi.org/10.21105/joss.02169

4

https://github.com/jtilly/matchingR
http://arxiv.org/abs/2002.02701
https://doi.org/10.21105/joss.02169
https://doi.org/10.21105/joss.02169

	Summary
	Statement of Need
	References

