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Summary

Partial differential equations (PDEs) play a central role in describing the dynamics of physical
systems in research and in practical applications. However, equations appearing in realistic
scenarios are typically non-linear and analytical solutions rarely exist. Instead, such systems
are solved by numerical integration to provide insight into their behavior. Moreover, such in-
vestigations can motivate approximative solutions, which might then lead to analytical insight.
The py-pde python package presented in this paper allows researchers to quickly and conve-
niently simulate and analyze PDEs of the general form

∂tu(x, t) = D[u(x, t)] + η(u,x, t) ,

where D is a (non-linear) differential operator that defines the time evolution of a (set of)
physical fields u with possibly tensorial character, which depend on spatial coordinates x and
time t. The framework also supports stochastic differential equations in the Itô representation,
indicated by the noise term η in the equation above.
The main goal of the py-pde package is to provide a convenient way to analyze general
PDEs, while at the same time allowing for enough flexibility to easily implement specialized
code for particular cases. Since the code is written in pure Python, it can be easily installed
via pip by simply calling pip install py-pde. However, the central parts are just-in-time
compiled using numba (Lam, Pitrou, & Seibert, 2015) for computational efficiency. To improve
user interaction further, some arguments accept mathematical expressions that are parsed by
sympy (Meurer et al., 2017) and are compiled optionally. This approach lowers the barrier
for new users while also providing speed and flexibility for advanced use cases. Moreover, the
package provides convenience functions for creating suitable initial conditions, for controlling
what is analyzed as well as stored during a simulation, and for visualizing the final results.
The py-pde package thus serves as a toolbox for exploring PDEs for researchers as well as
for students who want to delve into the fascinating world of dynamical systems.

Methods

The basic objects of the py-pde package are scalar and tensorial fields defined on various
discretized grids. These grids can deal with periodic boundary conditions and they allow
exploiting spatial symmetries that might be present in the physical problem. For instance, the
scalar field f(z, r) =

√
z ∗ e−r2 in cylindrical coordinates assuming azimuthal symmetry can

be visualized using

grid = pde.CylindricalGrid(radius=5, bounds_z=[0, 1], shape=(32, 8))
field = pde.ScalarField.from_expression(grid, 'sqrt(z) * exp(-r**2)')
field.plot()
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The package defines common differential operators that act directly on the fields. For instance,
calling field.gradient(bc='neumann') returns a vector field on the same cylindrical grid
where the components correspond to the gradient of field assuming Neumann boundary
conditions. Here, differential operators are evaluated using the finite difference method (FDM)
and the package supports various boundary conditions, which can be separately specified per
field and boundary. The discretized fields are the foundation of the py-pde package and allow
the comfortable construction of initial conditions, the visualization of final results, and the
detailed investigation of intermediate data.
The main part of the py-pde package provides the infrastructure for solving partial differential
equations. Here, we use the method of lines by explicitly discretizing space using the grid
classes described above. This reduces the PDEs to a set of ordinary differential equations,
which can be solved using standard methods. For instance, the diffusion equation ∂tu = ∇2u
on the cylindrical grid defined above can be solved by

eq = pde.DiffusionPDE()
result = eq.solve(field, t_range=[0, 10])

Note that the partial differential equation is defined independent of the grid, allowing use of the
same implementation for various geometries. The package provides simple implementations
of standard PDEs, but extensions are simple to realize. In particular, the differential operator
D can be implemented in pure Python for initial testing, while a more specialized version
compiled with numba (Lam et al., 2015) might be added later for speed. This approach allows
fast testing of new PDEs while also providing an avenue for efficient calculations later.
The flexibility of py-pde is one of its key features. For instance, while the package implements
forward and backward Euler methods as well as a Runge-Kutta scheme, users might require
more sophisticated solvers. We already provide a wrapper for the excellent scipy.integrate
.solve_ivp method from the SciPy package (Virtanen et al., 2020) and further additions are
straightforward. Finally, the explicit Euler stepper provided by py-pde also supports stochastic
differential equations in the Itô representation. The standard PDE classes support additive
Gaussian white noise, but alternatives, including multiplicative noise, can be specified in user-
defined classes. This feature allows users to quickly test the effect of noise on dynamical
systems without in-depth knowledge of the associated numerical implementation.
Finally, the package provides many convenience methods that allow analyzing simulations
on the fly, storing data persistently, and visualizing the temporal evolution of quantities of
interest. These features might be helpful even when not dealing with PDEs. For instance,
the result of applying differential operators on the discretized fields can be visualized directly.
Here, the excellent integration of matplotlib (Hunter, 2007) into Jupyter notebooks (Pérez
& Granger, 2007) allows for an efficient workflow.
The py-pde package employs a consistent object-oriented approach, where each component
can be extended and some can even be used in isolation. For instance, the numba-compiled
finite-difference operators, which support flexible boundary conditions, can be applied to nu
mpy.ndarrays directly, e.g., in custom applications. Generally, the just-in-time compilation
provided by numba (Lam et al., 2015) allows for numerically efficient code while making
deploying code easy. In particular, the package can be distributed to a cluster using pip
without worrying about setting paths or compiling source code.
The py-pde package joins a long list of software packages that aid researchers in analyzing
PDEs. Lately, there have been several attempts at simplifying the process of translating the
mathematical formulation of a PDE to a numerical implementation on the computer. Most
notably, the finite-difference approach has been favored by the packages scikit-finite-d
iff (Cellier & Ruyer-Quil, 2019) and Devito (Louboutin et al., 2019). Conversely, finite-
element and finite-volume methods provide more flexibility in the geometries considered and
have been used in major packages, including FEniCS (Alnæs et al., 2015), FiPy (Guyer,
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Wheeler, & Warren, 2009), pyclaw (Ketcheson et al., 2012), and SfePy (Cimrman, Lukeš,
& Rohan, 2019). Finally, spectral methods are another popular approach for calculating
differentials of discretized fields, e.g., in the dedalus project (Burns, Vasil, Oishi, Lecoanet,
& Brown, 2019). While these methods could in principle also be implemented in py-pde, they
are limited to a small set of viable boundary conditions and are thus not the primary focus.
Instead, py-pde aims at providing a full toolchain for creating, simulating, and analyzing PDEs
and the associated fields. While being useful in research, py-pde might thus also suitable for
education.
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