
py-pde: A Python package for solving partial differential
equations
David Zwicker1

1 Max Planck Institute for Dynamics and Self-Organization, Göttingen, GermanyDOI: 10.21105/joss.02158

Software
• Review
• Repository
• Archive

Editor: Juanjo Bazán
Reviewers:

• @celliern
• @mstimberg

Submitted: 02 March 2020
Published: 03 April 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Partial differential equations (PDEs) play a central role in describing the dynamics of physical
systems in research and in practical applications. However, equations appearing in realistic
scenarios are typically non-linear and analytical solutions rarely exist. Instead, such systems
are solved by numerical integration to provide insight into their behavior. Moreover, such in-
vestigations can motivate approximative solutions, which might then lead to analytical insight.
The py-pde python package presented in this paper allows researchers to quickly and conve-
niently simulate and analyze PDEs of the general form

∂tu(x, t) = D[u(x, t)] + η(u,x, t) ,

where D is a (non-linear) differential operator that defines the time evolution of a (set of)
physical fields u with possibly tensorial character, which depend on spatial coordinates x and
time t. The framework also supports stochastic differential equations in the Itô representation,
indicated by the noise term η in the equation above.
The main goal of the py-pde package is to provide a convenient way to analyze general
PDEs, while at the same time allowing for enough flexibility to easily implement specialized
code for particular cases. Since the code is written in pure Python, it can be easily installed
via pip by simply calling pip install py-pde. However, the central parts are just-in-time
compiled using numba (Lam, Pitrou, & Seibert, 2015) for computational efficiency. To improve
user interaction further, some arguments accept mathematical expressions that are parsed by
sympy (Meurer et al., 2017) and are compiled optionally. This approach lowers the barrier
for new users while also providing speed and flexibility for advanced use cases. Moreover, the
package provides convenience functions for creating suitable initial conditions, for controlling
what is analyzed as well as stored during a simulation, and for visualizing the final results.
The py-pde package thus serves as a toolbox for exploring PDEs for researchers as well as
for students who want to delve into the fascinating world of dynamical systems.

Methods

The basic objects of the py-pde package are scalar and tensorial fields defined on various
discretized grids. These grids can deal with periodic boundary conditions and they allow
exploiting spatial symmetries that might be present in the physical problem. For instance, the
scalar field f(z, r) =

√
z ∗ e−r2 in cylindrical coordinates assuming azimuthal symmetry can

be visualized using

grid = pde.CylindricalGrid(radius=5, bounds_z=[0, 1], shape=(32, 8))
field = pde.ScalarField.from_expression(grid, 'sqrt(z) * exp(-r**2)')
field.plot()

Zwicker, D., (2020). py-pde: A Python package for solving partial differential equations. Journal of Open Source Software, 5(48), 2158.
https://doi.org/10.21105/joss.02158

1

https://doi.org/10.21105/joss.02158
https://github.com/openjournals/joss-reviews/issues/2158
https://github.com/zwicker-group/py-pde
https://doi.org/10.5281/zenodo.3739300
http://juanjobazan.com
https://github.com/celliern
https://github.com/mstimberg
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02158

The package defines common differential operators that act directly on the fields. For instance,
calling field.gradient(bc='neumann') returns a vector field on the same cylindrical grid
where the components correspond to the gradient of field assuming Neumann boundary
conditions. Here, differential operators are evaluated using the finite difference method (FDM)
and the package supports various boundary conditions, which can be separately specified per
field and boundary. The discretized fields are the foundation of the py-pde package and allow
the comfortable construction of initial conditions, the visualization of final results, and the
detailed investigation of intermediate data.
The main part of the py-pde package provides the infrastructure for solving partial differential
equations. Here, we use the method of lines by explicitly discretizing space using the grid
classes described above. This reduces the PDEs to a set of ordinary differential equations,
which can be solved using standard methods. For instance, the diffusion equation ∂tu = ∇2u
on the cylindrical grid defined above can be solved by

eq = pde.DiffusionPDE()
result = eq.solve(field, t_range=[0, 10])

Note that the partial differential equation is defined independent of the grid, allowing use of the
same implementation for various geometries. The package provides simple implementations
of standard PDEs, but extensions are simple to realize. In particular, the differential operator
D can be implemented in pure Python for initial testing, while a more specialized version
compiled with numba (Lam et al., 2015) might be added later for speed. This approach allows
fast testing of new PDEs while also providing an avenue for efficient calculations later.
The flexibility of py-pde is one of its key features. For instance, while the package implements
forward and backward Euler methods as well as a Runge-Kutta scheme, users might require
more sophisticated solvers. We already provide a wrapper for the excellent scipy.integrate
.solve_ivp method from the SciPy package (Virtanen et al., 2020) and further additions are
straightforward. Finally, the explicit Euler stepper provided by py-pde also supports stochastic
differential equations in the Itô representation. The standard PDE classes support additive
Gaussian white noise, but alternatives, including multiplicative noise, can be specified in user-
defined classes. This feature allows users to quickly test the effect of noise on dynamical
systems without in-depth knowledge of the associated numerical implementation.
Finally, the package provides many convenience methods that allow analyzing simulations
on the fly, storing data persistently, and visualizing the temporal evolution of quantities of
interest. These features might be helpful even when not dealing with PDEs. For instance,
the result of applying differential operators on the discretized fields can be visualized directly.
Here, the excellent integration of matplotlib (Hunter, 2007) into Jupyter notebooks (Pérez
& Granger, 2007) allows for an efficient workflow.
The py-pde package employs a consistent object-oriented approach, where each component
can be extended and some can even be used in isolation. For instance, the numba-compiled
finite-difference operators, which support flexible boundary conditions, can be applied to nu
mpy.ndarrays directly, e.g., in custom applications. Generally, the just-in-time compilation
provided by numba (Lam et al., 2015) allows for numerically efficient code while making
deploying code easy. In particular, the package can be distributed to a cluster using pip
without worrying about setting paths or compiling source code.
The py-pde package joins a long list of software packages that aid researchers in analyzing
PDEs. Lately, there have been several attempts at simplifying the process of translating the
mathematical formulation of a PDE to a numerical implementation on the computer. Most
notably, the finite-difference approach has been favored by the packages scikit-finite-d
iff (Cellier & Ruyer-Quil, 2019) and Devito (Louboutin et al., 2019). Conversely, finite-
element and finite-volume methods provide more flexibility in the geometries considered and
have been used in major packages, including FEniCS (Alnæs et al., 2015), FiPy (Guyer,

Zwicker, D., (2020). py-pde: A Python package for solving partial differential equations. Journal of Open Source Software, 5(48), 2158.
https://doi.org/10.21105/joss.02158

2

https://doi.org/10.21105/joss.02158

Wheeler, & Warren, 2009), pyclaw (Ketcheson et al., 2012), and SfePy (Cimrman, Lukeš,
& Rohan, 2019). Finally, spectral methods are another popular approach for calculating
differentials of discretized fields, e.g., in the dedalus project (Burns, Vasil, Oishi, Lecoanet,
& Brown, 2019). While these methods could in principle also be implemented in py-pde, they
are limited to a small set of viable boundary conditions and are thus not the primary focus.
Instead, py-pde aims at providing a full toolchain for creating, simulating, and analyzing PDEs
and the associated fields. While being useful in research, py-pde might thus also suitable for
education.

Acknowledgements

I am thankful to Jan Kirschbaum, Ajinkya Kulkarni, Estefania Vidal, and Noah Ziethen for
discussions and critical testing of this package.

References

Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C.,
et al. (2015). The FEniCS Project Version 1.5. Archive of Numerical Software, 3(100).
doi:10.11588/ans.2015.100.20553

Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., & Brown, B. P. (2019). Dedalus:
A Flexible Framework for Numerical Simulations with Spectral Methods. arXiv e-prints,
arXiv:1905.10388. Retrieved from http://arxiv.org/abs/1905.10388

Cellier, N., & Ruyer-Quil, C. (2019). scikit-finite-diff, a new tool for PDE solving. Journal of
Open Source Software, 4(38), 1356. doi:10.21105/joss.01356

Cimrman, R., Lukeš, V., & Rohan, E. (2019). Multiscale finite element calculations in Python
using SfePy. Advances in Computational Mathematics. doi:10.1007/s10444-019-09666-0

Guyer, J. E., Wheeler, D., & Warren, J. A. (2009). FiPy: Partial differential equations with
Python. Computing in Science & Engineering, 11(3), 6–15. doi:10.1109/MCSE.2009.52

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. doi:10.1109/MCSE.2007.55

Ketcheson, D. I., Mandli, K. T., Ahmadia, A. J., Alghamdi, A., Quezada de Luna, M.,
Parsani, M., Knepley, M. G., et al. (2012). PyClaw: Accessible, Extensible, Scalable
Tools for Wave Propagation Problems. SIAM Journal on Scientific Computing, 34(4),
C210–C231. doi:10.1137/110856976

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-Based Python JIT Compiler.
In Proceedings of the second workshop on the LLVM compiler infrastructure in HPC, LLVM
’15. New York, NY, USA: Association for Computing Machinery. doi:10.1145/2833157.
2833162

Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P. A., Herrmann, F. J., Velesko,
P., et al. (2019). Devito (v3.1.0): An embedded domain-specific language for finite
differences and geophysical exploration. Geoscientific Model Development, 12(3), 1165–
1187. doi:10.5194/gmd-12-1165-2019

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar, A.,
et al. (2017). SymPy: symbolic computing in Python. PeerJ Computer Science, 3, e103.
doi:10.7717/peerj-cs.103

Pérez, F., & Granger, B. E. (2007). IPython: A system for interactive scientific computing.
Computing in Science & Engineering, 9(3), 21–29. doi:10.1109/MCSE.2007.53

Zwicker, D., (2020). py-pde: A Python package for solving partial differential equations. Journal of Open Source Software, 5(48), 2158.
https://doi.org/10.21105/joss.02158

3

https://doi.org/10.11588/ans.2015.100.20553
http://arxiv.org/abs/1905.10388
https://doi.org/10.21105/joss.01356
https://doi.org/10.1007/s10444-019-09666-0
https://doi.org/10.1109/MCSE.2009.52
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1137/110856976
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.5194/gmd-12-1165-2019
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.21105/joss.02158

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., et al. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods. doi:10.1038/s41592-019-0686-2

Zwicker, D., (2020). py-pde: A Python package for solving partial differential equations. Journal of Open Source Software, 5(48), 2158.
https://doi.org/10.21105/joss.02158

4

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.02158

	Summary
	Methods
	Acknowledgements
	References

