
osfr: An R Interface to the Open Science Framework
Aaron R. Wolen1, Chris H.J. Hartgerink2, Ryan Hafen3, Brian G.
Richards4, Courtney K. Soderberg5, and Timothy P. York6

1 Transplant Research Institute, Department of Surgery, University of Tennessee Health Science
Center 2 Liberate Science GmbH 3 Department of Statistics, Purdue University 4 Merkle Group Inc.
5 Center for Open Science 6 Data Science Lab, Department of Human and Molecular Genetics,
Virginia Commonwealth University

DOI: 10.21105/joss.02071

Software
• Review
• Repository
• Archive

Editor: Kristen Thyng
Reviewers:

• @kthyng

Submitted: 21 January 2020
Published: 06 February 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Background

Reproducible research requires effective project management workflows that promote con-
sistency and facilitate transparency. Hallmarks of effective workflows include strategies for
tracking the provenance of results, recording intermediate changes, conveniently documenting
procedures, and working with collaborators without duplicating effort (Sandve, Nekrutenko,
Taylor, & Hovig, 2013). For technically skilled researchers, the combination of version control
software (VCS) such as git and cloud-based project repositories (e.g., GitHub and GitLab)
enable highly effective workflows (Ram, 2013) that facilitate automation and computational
reproducibility. However, these tools have a steep learning curve, especially for researchers
whose training is far removed from software development. Alternatively, the Open Science
Framework (OSF) offers much of the same functionality through an intuitive point-and-click
web-based interface, significantly lowering the barrier to adopting best practices for researchers
of all skill levels, or research groups composed of individuals with different levels of computa-
tional expertise (Sullivan, DeHaven, & Mellor, 2019). Yet the increase in accessibility comes
at the cost of limiting opportunities for automation. osfr fills this gap for R users by allowing
them to programmatically interact with OSF through a suite of functions for managing their
projects and files.

Functional Overview

On OSF, individual repositories are referred to as projects and serve as the top-level unit
of content organization. New projects can be created with osfr using osf_create_proj
ect(), which allows you to specify the project’s title, provide a description, and indicate
whether it should be private (the default) or publicly accessible. Every OSF project includes
a cloud-based storage bucket where files can be stored and organized into directories. You
can use osf_mkdir() to add directories and osf_upload() to populate the project with
files. osfr supports recursively uploading nested directories, making it possible to easily mirror
the contents of a local project on OSF. For existing projects and project files, osfr provides
functions for most common file operations such as copying (osf_cp()), moving (osf_mv()),
deleting (osf_rm()), and downloading (osf_download()).
A key organizational feature of OSF is the ability to augment a project’s structure with sub-
projects, which are referred to as components on OSF, and can be added with the osf_cr
eate_component() function. Like top-level projects, every component is assigned a unique
URL upon creation and contains its own cloud-based storage bucket, activity log, wiki, and
user permissions. This allows users to create arbitrarily nested projects that can easily scale
to meet the needs of even large, multi-institutional collaborations (see the Cancer Biology

Wolen et al., (2020). osfr: An R Interface to the Open Science Framework. Journal of Open Source Software, 5(46), 2071. https://doi.org/
10.21105/joss.02071

1

https://doi.org/10.21105/joss.02071
https://github.com/openjournals/joss-reviews/issues/2071
https://github.com/ropensci/osfr
https://doi.org/10.5281/zenodo.3625248
http://kristenthyng.com/
https://github.com/kthyng
http://creativecommons.org/licenses/by/4.0/
https://osf.io/e81xl/
https://osf.io/e81xl/


Reproducibility Project for a great example). Whatever the scale of your work, adopting a
consistent structure across projects creates predictable expectations, facilitates understanding
for you and your collaborators (Wilson et al., 2017), and makes it easier to stay organized as
a project inevitably grows in complexity over time. Maintaining a consistent structure can be
a challenge, especially if implemented in an ad hoc process, but osfr enables you to codify
your preferred organizational structure of components and directories in a simple script that
can be run at the outset of every new project.

Implementation and Design

osfr is built on the OSF public REST API, available at https://developer.osf.io, and uses
rOpenSci’s HTTP client, crul (Chamberlain, 2019), for API Communication. In order to
provide an interface that feels natural to R users, items retrieved from the OSF are represented
as data.frame-like objects called osf_tbls. The osf_tbl class is built on top of the
tibble package (Müller & Wickham, 2019) and, like googledrive’s dribble class (D’Agostino
McGowan & Bryan, 2019), uses a list-column to encapsulate JSON responses from the API.
These deeply nested structures are rarely of interest to the end user but are essential for the
package’s internal methods. The vast majority of osfr functions return osf_tbls as output
and expect them as input, so that method chaining is possible using magrittr’s pipe operator
(Bache & Wickham, 2014).
Exported osfr functions all start with the prefix, osf_, following the <prefix>_<verb> naming
convention used in packages like stringr (Wickham, 2019), which facilitates auto-completion
in supported IDEs (like RStudio) and avoids namespace clashes with other packages that
perform similar file-based operations. Where possible, we adopt the names of common Unix
utilities that perform analogous tasks (e.g., osf_cp(), osf_mkdir()).

Summary

osfr provides an idiomatic R interface to OSF (Open Science Framework, https://www.
osf.io), a free and open source web application that is part open-access repository and part
collaborative project management tool.

References

Bache, S. M., & Wickham, H. (2014). Magrittr: A forward-pipe operator for R. Retrieved
from https://CRAN.R-project.org/package=magrittr

Chamberlain, S. (2019). Crul: HTTP client. Retrieved from https://CRAN.R-project.org/
package=crul

D’Agostino McGowan, L., & Bryan, J. (2019). Googledrive: An interface to google drive.
Retrieved from https://cran.r-project.org/package=googledrive

Müller, K., & Wickham, H. (2019). Tibble: Simple data frames. Retrieved from https:
//CRAN.R-project.org/package=tibble

Ram, K. (2013). Git can facilitate greater reproducibility and increased transparency in sci-
ence. Source code for biology and medicine, 8(1), 7. doi:10.1186/1751-0473-8-7

Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten simple rules for repro-
ducible computational research. PLOS Computational Biology, 9(10), 1–4. doi:10.1371/
journal.pcbi.1003285

Wolen et al., (2020). osfr: An R Interface to the Open Science Framework. Journal of Open Source Software, 5(46), 2071. https://doi.org/
10.21105/joss.02071

2

https://developer.osf.io
https://tibble.tidyverse.org
https://googledrive.tidyverse.org
https://magrittr.tidyverse.org
https://stringr.tidyverse.org
https://www.osf.io
https://www.osf.io
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=crul
https://CRAN.R-project.org/package=crul
https://cran.r-project.org/package=googledrive
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=tibble
https://doi.org/10.1186/1751-0473-8-7
https://doi.org/10.1371/journal.pcbi.1003285
https://doi.org/10.1371/journal.pcbi.1003285
https://doi.org/10.21105/joss.02071
https://doi.org/10.21105/joss.02071


Sullivan, I., DeHaven, A., & Mellor, D. (2019). Open and reproducible research on open
science framework. Current protocols, 18(1), e32. doi:10.1002/cpet.32

Wickham, H. (2019). Stringr: Simple, consistent wrappers for common string operations.
Retrieved from https://cran.r-project.org/package=stringr

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). Good
enough practices in scientific computing. PLOS Computational Biology, 13(6), 1–20.
doi:10.1371/journal.pcbi.1005510

Wolen et al., (2020). osfr: An R Interface to the Open Science Framework. Journal of Open Source Software, 5(46), 2071. https://doi.org/
10.21105/joss.02071

3

https://doi.org/10.1002/cpet.32
https://cran.r-project.org/package=stringr
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.21105/joss.02071
https://doi.org/10.21105/joss.02071

	Background
	Functional Overview
	Implementation and Design

	Summary
	References

