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Summary

Heart rate variability (HRV) is a non-invasive tool to assess the cardiac autonomic integrity
and cardiovascular homeostasis (Electrophysiology, 1996). HRV quantifies the instantaneous
variations in the RR intervals (RRi), which is produced by the balanced action of the parasym-
pathetic and sympathetic branches of the autonomic nervous system (ANS) over the sinoatrial
(SA) node, and modulated by different physiological inputs (e.g., respiration, blood pressure,
temperature, emotions, etc) (Malik & Camm, 1990). Specifically, the parasympathetic acti-
vation produces fast and short-lasting bradycardia, which results in high-frequency oscillations
(i.e., 0.15 - 0.40 Hz) in heart rate. On the other hand, sympathetic activation produces
slower and longer-lasting variations in heart rate, which results in low-frequency (i.e., ~ 0.1
Hz) oscillations in heart rate.
Increased HRV indicates a predominance of the parasympathetic over the sympathetic ac-
tivation in the SA node, and indicates enhanced cardiac autonomic flexibility and improved
overall health (Malik & Camm, 1990). Conversely, a reduced HRV is usually accompanied by
sympathetic dominance and suggests increased rigidity and loss of control of the ANS to the
cardiovascular system, which is a sign of disease vulnerability (Malik & Camm, 1990). For
instance, a reduced SDNN (i.e., standard deviation of RR intervals, a simple statistical-based
time domain index of HRV) has been shown to overperform traditional cardiovascular risk
parameters in predicting mortality in a cohort of heart failure patients (Nolan et al., 1998).
A reduced HRV has also been linked with metabolic dysfunction (Weissman, Lowenstein,
Peleg, Thaler, & Zimmer, 2006), increased inflammation (Sajadieh et al., 2004), depression
(Sgoifo, Carnevali, Pico Alfonso, & Amore, 2015), psychiatric disorders (DeGiorgio et al.,
2010), sleep disturbance (Burton, Rahman, Kadota, Lloyd, & Vollmer-Conna, 2010), among
others. Based on this wide prognostic utility, the interest in approaches to evaluate HRV has
shown an exponential growth in different medicine specialties and research fields in the recent
years.
HRV is routinely assessed using linear methods, through the calculation of different indices
either in time- or frequency-domain. Time-domain consists of a collection of statistical metrics,
such as the average value of RRi (mRRi), the standard deviation of RRi (SDNN; the NN stands
for natural or sinusal intervals), the standard deviation of the successive differences (SDSD),
the number or percentage of RRi longer than 50ms (NN50 and pNN50) and the root mean
squared of successive difference in adjacent RRi (RMSSD - equation 1) (Electrophysiology,
1996). Each of these indices quantifies different facets of the HRV, which are promoted
by different autonomic sources. SDNN quantifies overall variability behind HRV, which is
produced by both parasympathetic and sympathetic branches. NN50, pNN50, and RMSSD
quantify beat-to-beat HRV, which is produced predominantly by the parasympathetic action
in the heart.

Bartels et al., (2020). HRV: a Pythonic package for Heart Rate Variability Analysis. Journal of Open Source Software, 5(51), 1867. https:
//doi.org/10.21105/joss.01867

1

https://doi.org/10.21105/joss.01867
https://github.com/openjournals/joss-reviews/issues/1867
https://github.com/rhenanbartels/hrv
https://doi.org/10.5281/zenodo.3960216
https://kevinmoerman.org
https://github.com/paulvangentcom
https://github.com/Kevin-Mattheus-Moerman
https://github.com/Kevin-Mattheus-Moerman
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01867
https://doi.org/10.21105/joss.01867


RMSSD =

√√√√ 1

N − 1

N−1∑
j−1

(RRij −RRij+1)2

- Equation 1
where N is the count of RRi values and RRij is the jth RRi value.
The frequency-domain analysis quantifies the extent of contribution of each frequency compo-
nent to the overall heart rate fluctuation (Figure 2). The main frequency components are the
VLF (i.e., very low frequency; < 0.04 Hz); LF (low frequency; 0.04-0.15 Hz) and the HF (i.e.,
high frequency; 0.15-0.40 Hz). The HF component is coupled with the respiratory fluctuation
(i.e., respiratory sinus arrhythmia) and is produced by the parasympathetic modulation on the
heart. The LF is mainly coupled with variations in the blood pressure (i.e., Mayer waves), and
is thought to represent the modulation of both parasympathetic and sympathetic branches on
the heart. The VLF does not have a defined physiological source, but it may involve alterations
in heart rate produced by hormones and body temperature (Electrophysiology, 1996).
Roughly, frequency domain analysis involves the calculation of the spectral energy content
of each frequency component through a power spectral density (PSD) estimation. Several
methods have been developed to perform the PSD estimation and they are generally divided
into two categories that provide comparable results: non-parametric and parametric methods,
each with respective pros and cons (Electrophysiology, 1996). The Welch periodogram (Welch,
1967) is a non-parametric approach based on the Fourier Transform and consists of the
average of several PSD estimations on different segments of the same RRi series, which is an
important approach to reduce the spectral estimation variability (Welch, 1967). On the other
hand, the autoregressive technique is the most widely used parametric method to estimate
the spectral components of the HRV signal (Berntson et al., 1997). The PSD estimation with
the autoregressive method consists of a parametric representation of the RRi series and the
frequency response of the estimated model. From the estimated PSD, generally, the following
indices presented in Table 1 are calculated.

Variable Units Frequency Band
Total Power ms2 0 - 0.4 Hz
VLF ms2 < 0.04 Hz
LF ms2 0.04 - 0.15 Hz
HF ms2 0.15 - 0.4 Hz
LF/HF
LFn.u normalized units LF

TotalPower−V LF

HFn.u normalized units HF
TotalPower−V LF

Non-linear indices are also frequently used to extract information from the ANS based on the
heart rate fluctuations patterns. The Poincaré ellipse plot belongs to the non-linear methods
and consists of a diagram in which each RRi is plotted as a function of the previous RRi value
(Berntson et al., 1997). In addition to the visual information about the RRi scatter given
by the plot, two indices are extracted from this diagram: SD1 and SD2. The former reflects
the short term fluctuations of the heart rate, and for this reason is highly correlated with the
RMSSD, pNN50 and HF indices, while the latter reflects both short and long terms of the
fluctuation of the heart rate and correlates with SDNN and LF indices. Additionaly, the SD1
index represents the standard deviation spread orthogonally to the identity line (y=x) and it
is the ellipse width, whereas the SD2 index represents the standard deviation spread along
the identity line and specifies the length of the ellipse. At the end of the following section,
the Poincaré plot of a given RRi series is depicted using the module presented in the current
article.
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The calculation of the SD1 and SD2 can be derived from SDSD and SDNN values as shown
by equations 2 and 3 below:

SD1 =
√
2SDNN2 − 2SD22

- Equation 2

SD2 =

√
2SDNN2 − 1

2
SDSD2

- Equation 3
There are several software packages written in many different programming languages that
offer functions to work with RRi signals. Some of them have a command-line interface
(Rodrı́guez-Liñares, Vila, Mendez, Lado, & Olivieri, 2008) and others offer a user’s interface to
improve the interaction with the RRi series and the analyses (Tarvainen, Niskanen, Lipponen,
Ranta-Aho, & Karjalainen, 2014, p. @bartels2017sinuscor). Specifically for Python, there is
also open-source packages available and ready to work on HRV analisys, such as hrvanalysis,
pyhrv (Gomes, Margaritoff, & Silva, 2019), and heartpy (Gent, Farah, Nes, & Arem, 2019).
Although these modules do a great work offering many of the most widely used techniques to
deal with tachograms and to extract relevant information from HRV signals, their functions
interface (API) relies on RRi signals stored as Python iterable or numpy arrays and is based
mostly on the procedural programming paradigm.
The hrv is a simple and open-source Python module that comes with the most common
techniques for filtering, detrending and extracting information about the ANS from the RRi
signals without losing the power and flexibility of a native Python object and a numpy arrays
(Oliphant, 2006). It brings the necessary methods to work with a tachogram encapsulated in
a Python class. In other words, once an RRi class is instantiated there are several methods
available for visualization, descriptive statistics, slicing the signal in shorter segments, and
displaying the metadata of the series.
With many software available to work with HRV analysis, the main reason why the hrv
module is being developed is to improve and simplify the interaction with an RRi series with
idiomatic Python code, closer to the native objects of this language. The object-oriented
approach offered by the present module allows a strong relation between the RRi series and its
methods, especially regarding time information. With a class representing and encapsulating
the RRi object, each RRi value is bound to its respective time information, and therefore, after
actions like slicing and filtering, the RRi series still keeps track of its information. Additionally,
the instance’s properties help to keep the state of the RRi series, informing, for instance, if it
is already detrended and/or resampled.
The following sections present the basic workflow with an RRi series and gives a better overview
of the functionalities available in the hrv module, starting with reading a file containing a
tachogram, visualizing the given RRi series, dealing with noise filtering and detrending and,
finally, calculating the time/frequency domain and non-linear HRV indices.

Basic Usage

This section presents a non-exhaustive walkthrough of the features offered by the hrv module.
To have access to the source code and more usage examples, please refer to the software
repository, the complete documentation or the notebooks with some use cases of the hrv
module.
Once the RRi series is created in Python using the hrv.io submodule, which supports text,
CSV and hrm (PolarTM) files, or from any Python iterable (i.e lists, tuples, etc), an RRi
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instance with the necessary methods to implement the Python iterable pattern is created. With
the RRi object it is possible to iterate (i.e [r for r in rri_series]), search for a value
at a given index (i.e rri_series[0]), and slice the tachogram (i.e rri_series[5:10]). As
the RRi class also implements some of the behaviors of the numpy array (Oliphant, 2006), it
is possible to perform math operations with the tachogram, i.e: rri_series / 1000.
The RRi class also has methods for basic statistical metrics calculation, such as average,
standard deviation, min and max, and others. In order to access a complete Python dictionary
containing all available statistical metrics of an RRi instance, it is possible to call the des
cribe() method. Features for visualization are also present in the RRi class. In order to
visualize the time series represented by the RRi series, the plot() method can be called. The
visualization of the histograms showing the distributions of RRi or heart rate time series is
also possible with the method hist().

Read a file containing RRi values and visualising it

The following code snippet shows how to read a RRi series from a single column CSV file and
plot the respective series with black lines.

from hrv.io import read_from_csv

rri = read_from_csv('path/to/file.csv')

fig, ax = rri.plot(color='k')

Figure 1: RR intervals of a young subject at rest condition produced with the plot() method from
the RRi class.

To retrieve statistical properties of a RRi series the method describe() can be invoked:

desc = rri.describe()

desc
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----------------------------------------
rri hr

----------------------------------------
min 750.00 66.30
max 905.00 80.00
mean 805.50 74.78
var 2646.25 20.85
std 51.44 4.57
median 805.00 74.54
amplitude 155.00 13.70

print(desc['std'])
{'rri': 51.44171459039833, 'hr': 4.5662272355549725}

Pre-processing

Filtering the RRi series

In some cases and for many different reasons, the tachogram may present with movement
artifacts or undesired RRi values, which may jeopardize the analysis results. One way to deal
with this scenario is to apply filters to the RRi series. For this reason, the hrv package
offers four lowpass filters for noise removal: moving average, which given an order value N ,
replaces every RRi value by the average of its N neighbors values; the moving median, which
works similarly to the moving average filter, but apply the median function; the quotient filter
(Piskorski & Guzik, 2005), that removes the RRi values which the ratio with its adjacent
RRi is greater than 1.2 or smaller than 0.8; and finally, the threshold filter, which is inspired
in Kubios (Tarvainen et al., 2014) threshold-based artifact correction algorithm: each RRi is
compared to a local value consisting of the median of adjacent RRi. If the difference between
a given RRi and the local median is greater than the threshold in milliseconds this RRi is
considered an ectopic beat. Ectopic RRi values are replaced with cubic spline interpolation of
the entire tachogram.

from hrv.filters import moving_median, quotient

filt_rri_median = moving_median(rri, order=3)
filt_rri_quotient = quotient(rri)

filt_rri_median.plot(ax=ax)
filt_rri_quotient.plot(ax=ax)
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Figure 2: The left panel shows the original RRi (blue line) and after filtering with a moving median
filter with order equal to 3 (orange line). The left panel depicts the original RRi (blue line) and after
filtering with a quotient filter (orange line). This picture was created using the plot() method from
the RRi instance.

Detrending the RRi series

Although the very-low-frequency components of the PSD function might have useful informa-
tion, they are generally removed from the RRi signals before the frequency-domain analysis is
performed. This pre-processing step before the frequency-domain analysis is important to re-
move intrinsic slow trends that are present in the HR fluctuation. This non-stationary behavior
may contaminate the overall dynamic of the RRi series and influence the results, especially
the VLF and LF measures (Tarvainen, Ranta-Aho, & Karjalainen, 2002). For this reason,
several methods have been developed to extract the frequency components responsible for the
non-stationary behavior of the RRi series.
Among the methods available in the literature for detrending the RRi series, the hrv module
offers the polynomial detrend, which consists of the subtraction of a Nth degree polynomial
from the RRi signal, where N is smaller than the length of the tachogram. It also offers the
Smoothness Priors method (Tarvainen et al., 2002), which is widely used in HRV analyses
and acts as a lowpass filter to remove complex trends from the RRi series. Finally, the hrv
module also offers a detrending method that uses the Savitsky-Golay lowpass filter to remove
low-frequency trends from the RRi series. The following code fragment applies the polynomial
detrend with a degree equal to 1 and the Savitsky-Golay filter to remove the slow frequency
components from an RRi recorded during rest.

from hrv.detrend import polynomial_detrend, sg_detrend
from hrv.sampledata import load_rest_rri

rri = load_rest_rri()

detrended_rri_poly = polynomial_detrend(rri, degree=1)
detrended_rri_sg = sg_detrend(rri, window_length=51, polyorder=3)

detrended_rri_poly.plot()
detrended_rri_sg.plot()
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Figure 3: The left panel shows the original RRi (blue line) and after detrending with polynomial
function with degree equal to 1 (black line). The left panel depicts the original RRi (blue line) and
after detreding with a Savitsky-Golay lowpass filter (black line).

Analyses

Time Domain

In order to calculate the time-domain indices, the function time_domain can be imported
from the submodule hrv.classical and applied to any Python iterable containing the RRi
series including the RRi instance from the module presented in this article.

from hrv.classical import time_domain

results = time_domain(rri)
print(results)

{'mhr': 66.528130159638053,
'mrri': 912.50302419354841,
'nn50': 337,
'pnn50': 33.971774193548384,
'rmssd': 72.849900286450023,
'sdnn': 96.990569261440797
'sdsd': 46.233829821038042}

Frequency Domain

Similarly to the time_domain function, to calculate the frequency-domain indices, the fre
quecy_domain, which is also placed in the hrv.classical submodule, can be used. The
frequency_domain function present in the hrv module takes care of the pre-processing
steps: the detrending of the RRi series (which the default is a linear function, but can be any
custom Python function), interpolation using cubic splines (also accepts linear interpolation)
and resampling at a given frequency, the default is 4Hz.
When Welch’s method is selected, a window function (default: hanning), the number of RRi
values per segment and the length of superposition between adjacent segments can be chosen.
When the AR method is selected, the order of the model (default 16) can be set.
The area under the curve of each frequency range in the estimated PSD is calculated using
the trapezoidal method. As a default, the hrv module uses the frequencies cutoffs shown in
Table 1 to limit the integration range of each frequency domain indices, however, it is possible
to set the frequency range of VLF, LF, and HF in the frequency_domain function call.
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from hrv.classical import frequency_domain

results = frequency_domain(
rri=rri,
fs=4.0,
method='welch',
interp_method='cubic',
detrend='linear'

)
print(results)

{'hf': 1874.6342520920668,
'hfnu': 27.692517001462079,
'lf': 4894.8271587038234,
'lf_hf': 2.6110838171452708,
'lfnu': 72.307482998537921,
'total_power': 7396.0879278950533,
'vlf': 626.62651709916258}

Figure 4: Power Spectral Density of a RRi series estimated with the Welch’s method.

Non-linear

Finally, among the non linear metrics, hrv module offers SD1 and SD2, which can be calculated
with the non_linear function from the hrv.classical submodule.

from hrv.classical import non_linear

results = non_linear(rri)
print(results)

{'sd1': 51.538501037146382,
'sd2': 127.11460955437322}
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The respective Poincaré plot of a given RRi series can be depicted with the poincare_plot()
method, as follows:

rri.poincare_plot()

Figure 5: Poincaré plot of a given RRi series.

Dependencies

The hrv package depends on the following modules: numpy (Oliphant, 2006), matplotlib
(Hunter, 2007), scipy (Jones, Oliphant, Peterson, & others, 2001) and spectrum (Cokelaer &
Hasch, 2017).
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