
PyUoI: The Union of Intersections Framework in Python
Pratik S. Sachdeva1, 2, 3, Jesse A. Livezey1, 3, Andrew J. Tritt4, and
Kristofer E. Bouchard1, 3, 4, 5

1 Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley,
California, USA 2 Department of Physics, University of California, Berkeley, Berkeley, California,
USA 3 Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory,
Berkeley, California, USA 4 Computational Research Division, Lawrence Berkeley National
Laboratory, Berkeley, California, USA 5 Helen Wills Neuroscience Institute, University of California,
Berkeley, Berkeley, California, USA

DOI: 10.21105/joss.01799

Software
• Review
• Repository
• Archive

Editor: Yuan Tang
Reviewers:

• @puolival
• @yzhao062

Submitted: 04 October 2019
Published: 06 December 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

The increasing size and complexity of scientific data requires statistical analysis methods that
scale and produce models that are both interpretable and predictive. Interpretability implies
one can interpret the output of the model in terms of processes generating the data (Murdoch,
Singh, Kumbier, Abbasi-Asl, & Yu, 2019). This typically requires identification of a small
number of features in the actual data and accurate estimation of their contributions (Bickel et
al., 2006). Meanwhile, achieving predictive power requires optimizing the performance of some
statistical measure such as precision, mean squared error, etc. Across inference procedures,
there is often a trade-off between interpretability and predictive power. The impact of this
trade-off is particularly acute for scientific applications, where the output of the model is used
to provide insight into the underlying physical processes that generated the data.
We recently introduced Union of Intersections (UoI), a flexible, modular, and scalable frame-
work designed to enhance both the identification of features (model selection) as well as the
estimation of the contributions of these features (model estimation) (Bouchard et al., 2017).
UoI-based methods leverage stochastic data resampling and a range of sparsity-inducing regu-
larization parameters to build families of potential feature sets robust to perturbations of the
data, and then average nearly unbiased parameter estimates of selected features to maximize
predictive accuracy. Models inferred through the UoI framework are characterized by their
usage of fewer parameters with little or no loss in predictive accuracy, and reduced bias relative
to benchmark approaches.
PyUoI is a Python package containing implementations of a variety of UoI-based algorithms,
encompassing regression, classification, and dimensionality reduction. In order to better fa-
cilitate its usage, PyUoI’s API is structured similarly to the scikit-learn package, which
is a commonly used Python machine learning library (Buitinck et al., 2013; Pedregosa et al.,
2011).
The UoI framework operates by fitting many models across resamples of the dataset and
across a set of regularization parameters. Since these fits can be performed in parallel, the
UoI framework is naturally scalable. PyUoI is equipped with mpi4py functionality to parallelize
model fitting on large datasets (Dalcı́n, Paz, & Storti, 2005).

Background

The Union of Intersections is not a single method or algorithm, but a flexible statistical
framework into which other algorithms can be inserted. In this section, we briefly describe

Sachdeva et al., (2019). PyUoI: The Union of Intersections Framework in Python. Journal of Open Source Software, 4(44), 1799. https:
//doi.org/10.21105/joss.01799

1

https://doi.org/10.21105/joss.01799
https://github.com/openjournals/joss-reviews/issues/1799
https://github.com/BouchardLab/pyuoi
https://doi.org/10.5281/zenodo.3563147
https://terrytangyuan.github.io/about/
https://github.com/puolival
https://github.com/yzhao062
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01799
https://doi.org/10.21105/joss.01799

UoILasso, the UoI implementation of lasso penalized regression. UoILasso is similar in structure
to the UoI versions of other generalized linear models (logistic and poisson). We refer the user
to existing literature on the UoI variants of column subset selection and non-negative matrix
factorization (Bouchard et al., 2017; Ubaru, Wu, & Bouchard, 2017).
Linear regression consists of estimating parameters β ∈ Rp×1 that map a p-dimensional vector
of features x ∈ Rp×1 to the observation variable y ∈ R, when the N samples are corrupted
by i.i.d Gaussian noise:

y = βTx+ ϵ (1)

where ϵ ∼ N (0, σ2) for each sample. When the true β is thought to be sparse (i.e., some
subset of the β are exactly zero), an estimate of β can be found by solving a constrained
optimization problem of the form

β̂ = argmin
β∈Rp

1

N

N∑
i=1

(yi − βTxi)
2 + λ|β|1 (2)

where |β|1 is the ℓ1-norm of the parameters and i indexes data samples. The ℓ1-norm is a
convenient penalty because it will tend to force parameters to be set exactly equal to zero,
performing feature selection (Tibshirani, 1994). Typically, λ, the degree to which feature spar-
sity is enforced, is unknown and must be determined through cross-validation or a penalized
score function across a set of hyperparameters {λj}kj=1.
The key mathematical idea underlying UoI is to perform model selection through intersection
(compressive) operations and model estimation through union (expansive) operations, in that
order. This separation of parameter selection and estimation provides selection profiles that
are more robust and parameter estimates that have less bias. This can be contrasted with
a typical Lasso fit wherein parameter selection and estimation are performed simultaneously.
The Lasso procedure can lead to selection profiles that are not robust to data resampling and
estimates that are biased by the penalty on β. For UoILasso, the procedure is as follows (see
Algorithm 1 for a more detailed pseudocode):

• Model Selection: For each λj in the Lasso path, generate estimates on NS resamples
of the data (Line 2). The support Sj (i.e., the set of non-zero parameters) for λj

consists of the features that persist in all model fits across the resamples (i.e., through
an intersection) (Line 7).

• Model Estimation: For each support Sj , perform Ordinary Least Squares (OLS) on NE

resamples of the data. The final model is obtained by averaging (i.e., taking the union)
across the supports chosen according to some model selection criteria for each resample
(Lines 15-16). The model selection criteria can be prediction quality on held-out data
or penalized likelihood methods (e.g., AIC or BIC).

Thus, the selection module ensures that, for each λj , only features that are stable to per-
turbations in the data (resamples) are allowed in the support Sj . This provides a family of
resample-stable model supports with varying levels of sparsity due to λj that can be used
in estimation. Then, the estimation module ensures that the most predictive supports per
resample are averaged together in the final model. The estimation module uses OLS rather
than Lasso to provide parameter estimates with low bias. The degree of feature compression
via intersections (quantified by NS) and the degree of feature expansion via unions (quantified
by NE) can be balanced to maximize prediction accuracy for the response variable y.

Sachdeva et al., (2019). PyUoI: The Union of Intersections Framework in Python. Journal of Open Source Software, 4(44), 1799. https:
//doi.org/10.21105/joss.01799

2

https://doi.org/10.21105/joss.01799
https://doi.org/10.21105/joss.01799

Algorithm 1 UoILasso

Input: X ∈ RN×p design matrix
y ∈ RN×1 response variable
Regularization strengths {λj}qj=1
Number of resamples NS and NE

Loss function L(β;X,y)

Model Selection
1: for k = 1 to NS do
2: Generate resample Xk, yk

3: for j = 1 to q do
4: β̂

jk
← Lasso regression (penalty λj) of yk on Xk

5: Sk
j ← {i} where β̂

jk

i ̸= 0

6: for j = 1 to q do

7: Sj ←
NS∩
k=1

Sk
j ▷ Intersection

8: Model Estimation
9: for k = 1 to NE do

10: Generate training
(
Xk

T ,y
k
T

)
and evaluation

(
Xk

E ,y
k
E

)
resamples

11: for j = 1 to q do
12: Xk

T,j , X
k
E,j ← Xk

T , X
k
E with features Sj extracted.

13: β̂
jk
← OLS Regression of yk

T on Xk
T,j

14: ℓjk ← L(β̂
jk
;Xk

E,j ,y
k
E)

15: β̂
k
← argmin

β̂
jk

ℓjk

16: β̂
∗
= median

k

(
β̂
k
)

▷ Union

17: return β̂
∗

Features

PyUoI is split up into two modules, with the following UoI algorithms:
• linear_model (generalized linear models)

– Lasso penalized linear regression UoILasso.
– Elastic-net penalized linear regression (UoIElasticNet).
– Logistic regression (Bernoulli and multinomial) (UoILogistic).
– Poisson regression (UoIPoisson).

• decomposition (dimensionality reduction)
– Column subset selection (UoICSS).
– Non-negative matrix factorization (UoINMF).

The generalized linear models we have implemented include the most commonly used models
in a variety of scientific disciplines, particularly in the fields of neuroscience and genomics.
Extensions to other generalized linear models (e.g., negative binomial regression, gamma
regression, etc.) are left as future work. However, given the inheritance structure of the
PyUoI framework, these extensions should be straightforward for the interested user.
Similar to scikit-learn, each UoI algorithm has its own Python class. Instantiations of
these classes are created with specific hyperparameters and are fit to user-provided datasets.
The hyperparameters allow the user to fine-tune the number of resamples, fraction of data in
each resample, and the model selection criteria used in the estimation module (in Algorithm 1,

Sachdeva et al., (2019). PyUoI: The Union of Intersections Framework in Python. Journal of Open Source Software, 4(44), 1799. https:
//doi.org/10.21105/joss.01799

3

https://doi.org/10.21105/joss.01799
https://doi.org/10.21105/joss.01799

test set accuracy is used, but the Akaike and Bayesian Information Criteria are also available
(Akaike, 1998; Schwarz, 1978)).
Additionally, UoI is agnostic to the specific solver used for a given model. That is, the UoI
framework operates on fits obtained from performing the optimization for a specified model
(such as the lasso optimization problem for linear regression). In the case of PyUoI, the
generalized linear models come equipped with a coordinate descent solver (from scikit-le
arn), a built-in Orthant-Wise Limited memory Quasi-Newton solver (Gong & Ye, 2015), and
the pycasso solver (Ge, 2019). The choice of solver is left to the user as a hyperparameter.
If a different solver is desired, PyUoI could be extended by the user to utilize this solver in a
straightforward manner.

Applications

We have used PyUoI largely in the realm of neuroscience and genomics (Bouchard et al., 2017;
Ubaru et al., 2017). A few applications include:

• Interpretable functional connectivity networks from neural populations in the visual,
auditory, and motor cortices of various animal models;

• Sparse decoding of behavioral activity from spiking neural activity;
• Parts-based decomposition of electrocorticography recordings in rat auditory cortex that

reflect functional cortical organization;
• Extraction of characteristic single nucleotide polymorphisms for the prediction of phe-

notypes in mice.
However, the algorithms implemented in PyUoI are broadly applicable to problems where
enforcement of sparsity at minimal cost to bias are desired.

Acknowledgements

We thank the contributors to earlier versions of this software. P.S.S. was supported by the
Department of Defense (DoD) through the National Defense Science & Engineering Graduate
Fellowship (NDSEG) Program. K.E.B. and J.A.L. were supported through the Lawrence
Berkeley National Laboratory-internal LDRD “Deep Learning for Science” led by Prabhat.
A.J.T. was supported by the Department of Energy project “Co-design for artificial intelligence
coupled with computing at scale for extremely large, complex datasets.” K.E.B. was funded by
Lawrence Berkeley National Laboratory-internal LDRD “Neuro/Nano-Technology for BRAIN”
led by Peter Denes.

References

Akaike, H. (1998). Information theory and an extension of the maximum likelihood prin-
ciple. In Selected papers of Hirotugu Akaike (pp. 199–213). Springer. doi:10.1007/
978-1-4612-1694-0_15
Bickel, P. J., Li, B., Tsybakov, A. B., Geer, S. A. van de, Yu, B., Valdés, T., Rivero, C., et al.
(2006). Regularization in statistics. Test, 15, 271–344. doi:10.1007/BF02607055
Bouchard, K., Bujan, A., Roosta-Khorasani, F., Ubaru, S., Prabhat, M., Snijders, A., Mao,
J.-H., et al. (2017). Union of Intersections (UoI) for interpretable data driven discovery and
prediction. In Advances in Neural Information Processing Systems 30 (pp. 1078–1086).

Sachdeva et al., (2019). PyUoI: The Union of Intersections Framework in Python. Journal of Open Source Software, 4(44), 1799. https:
//doi.org/10.21105/joss.01799

4

https://doi.org/10.1007/978-1-4612-1694-0_15
https://doi.org/10.1007/978-1-4612-1694-0_15
https://doi.org/10.1007/BF02607055
https://doi.org/10.21105/joss.01799
https://doi.org/10.21105/joss.01799

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V.,
et al. (2013). API design for machine learning software: Experiences from the scikit-learn
project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning (pp.
108–122).
Dalcı́n, L., Paz, R., & Storti, M. (2005). MPI for Python. Journal of Parallel and Distributed
Computing, 65(9), 1108–1115.
Ge, J. (2019). PICASSO: PathwIse calibrated sparse shooting algOrithm. GitHub repository.
https://github.com/jasonge27/picasso; GitHub.
Gong, P., & Ye, J. (2015). A modified orthant-wise limited memory quasi-newton method with
convergence analysis. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37 (pp. 276–284).
Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Definitions,
methods, and applications in interpretable machine learning. Proceedings of the National
Academy of Sciences, 116(44), 22071–22080. doi:10.1073/pnas.1900654116
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.
Schwarz. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2),
461–464. doi:10.1214/aos/1176344136
Tibshirani, R. (1994). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58, 267–288.
Ubaru, S., Wu, K., & Bouchard, K. E. (2017). UoI-NMF cluster: A robust nonnegative matrix
factorization algorithm for improved parts-based decomposition and reconstruction of noisy
data. In 2017 16th IEEE International Conference on Machine Learning and Applications
(ICMLA) (pp. 241–248). doi:10.1109/ICMLA.2017.0-152

Sachdeva et al., (2019). PyUoI: The Union of Intersections Framework in Python. Journal of Open Source Software, 4(44), 1799. https:
//doi.org/10.21105/joss.01799

5

https://github.com/jasonge27/picasso
https://doi.org/10.1073/pnas.1900654116
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1109/ICMLA.2017.0-152
https://doi.org/10.21105/joss.01799
https://doi.org/10.21105/joss.01799

	Summary
	Background
	Features
	Applications
	Acknowledgements
	References

