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Summary

widgyts is a custom Jupyter widget library to assist in interactive data visualization and
exploration with yt. yt (Turk et al., 2011) is a python package designed to read, process,
and visualize multidimensional scientific data. yt allows users to ingest and visualize data from
a variety of scientific domains with a nearly identical set of commands. Often, these datasets
are large, sparse, complex, and located remotely. Creating a publication-quality figure of
an area of interest for this data may take numerous exploratory visualizations and subsequent
parameter-tuning events. The widgyts package allows for interactive exploratory visualization
with yt, enabling users to more readily determine which parameters and selections they need
to best display their data.
The widgyts package is built on the ipywidgets (Grout, Frederic, Corlay, & Ragan-Kelley,
2019) framework, which allows yt users to browse their data using a Jupyter notebook or a
Jupyterlab instance. widgyts is developed on GitHub in the Data Exploration Lab organiza-
tion. Issues, questions, new feature requests, and any other relevant discussion can be found
at the source code repository (Munk & Turk, 2019).

Motivation

Data visualization and manipulation are integral to scientific discovery. A scientist may slice
and pan through various regions of a dataset before finding a region they wish to share with
colleagues. These events may also require shifting colormap settings, like the scale, type, or
bounds, before the features are highlighted to effectively convey a message. Each of these
interactions will require a new image to be calculated and displayed.
A number of packages in the python ecosystem use interactivity to help users parameter-tune
their visualizations. Matplotlib (Hunter, 2007) and ITK (Ibanez et al., 2019) have custom
widgets build on the ipywidgets framework (Corlay, Silvester, et al., 2019; McCormick et al.,
2020) that act as supplements to their plots. This is the principle that widgyts follows as well.
Other libraries like Bokeh (Bokeh Development Team, 2019) distribute interactive javascript-
backed widgets. Other frameworks like bqplot (Corlay, Sunkara, et al., 2019) have every plot
returned with interactive features. The packages named here are by no means comprehensive;
the python ecosystem is rich with interactive tools for visualization. However, it is illustrative
of the need and investment in interactivity for the visualization community.
A common user case for visualization is to have data stored remotely on a server and some
interface with which to interact with the data over the web. Because every plot interaction
requires a new image calculation, this may result in significant data transfer needs. For
this case, a request is sent to the server, which calculates the images, with every new plot
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interaction. When the request is sent the server calculates a new image, serializes it, and
the image is sent back to the client. The total time to generate one image can generally be
expressed as Tserver, where

tserver = trequest + timage calc, server + tpull, image + tdisplay.

The total compute time spent on image generation is Tserver = n ∗ tserver, where n is the
number of interactions with the figure.
widgyts modifies this process by shifting image calculation to occur client-side in the browser.
Rather than image serialization and calculation happening on a remote server, a portion of the
original data is uploaded into the WebAssembly backend of widgyts. The time to calculate
image client-side can be expressed as:

tclient = trequest + tpull,data + timage calc, client + tdisplay.

Subsequent interactions (n) with the image only affect the final two terms of the equation, so

Tclient = trequest + tpull,data + n ∗ [timage calc, client + tdisplay].

Thus, this becomes advantageous as

Tclient < Tserver

or

n ∗ timage calc, client + tpull, data < n ∗ [timage calc, server + tpull, image].

The time to pull an image or data is dependent on the data size and the transfer rate.
Tclient will be lower than Tserver as the number of interactions n grows, as the size of the
image (dataimage) grows, and as the time to calculate the image on the client timage calc, client
decreases.
Moving image calculation to the client requires a large initial cost of transferring a portion
of the original data to the client, which may be substantially larger than the size of a single
image. However, a dataset with sparse regions will be more efficient to transfer to the client
and subsequently calculate and pixelize there. Pixelizing a dataset with large, sparse regions
of low resolution, such as one calculated from an adaptive mesh, with a fixed higher resolution
will require recalculating and sending pixel values for a region that may only be represented
by a single value. Thus, for certain data representations this methodology also becomes
advantageous.

The WebAssembly Backend

To allow for efficient data loading into the browser we chose to use Rust compiled to We-
bAssembly. The WebAssembly backing of widgyts allows for binary, zero-copy storage of
loaded data on the client side, and WebAssembly has been designed to interface well with
JavaScript. Further, the primitive structure of WebAssembly reduces the time to calculate
the image in the browser, thus reducing the time to calculate the image client-side. Finally,
WebAssembly is executed in a sandboxed environment separate from other processes and is
memory safe. At the time of writing, widgyts is the only webassembly-native backed visual-
ization widget in the python ecosystem.
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While yt can access data at an arbitrary location within the dataset, widgyts is structured
to access any data within a 2D slice. Thus, only a slice of the data is uploaded client-side, not
the entire dataset. For the large, sparse datasets that widgyts has been designed for, it would
be infeasible to upload the entire dataset into the browser. A new slice in the third dimension
will require an additional data upload from the server. Therefore, not all exploration of the
dataset can be performed exclusively client-side.

Results

The following image is a simple timing comparison between using yt with the Jupyter widgets
package ipywidgets and using the widgyts package on the same dataset. The dataset is
the IsolatedGalaxy dataset; a commonly used example in the yt documentation consisting of
a galaxy simulation perfomed on an adaptive mesh. The dataset has variable resolution and is
sparse near the domain boundaries. A notebook is included in the widgyts repository (Munk
& Turk, 2019) for one interested in replicating this analysis.

Figure 1: A timing comparison between using ipywidgets with yt and widgyts on the IsolatedGalaxy
dataset distributed with yt. The image generated by each tool is 512x512 pixels. Each timing point
is based on a number of panning interactions in x, averaged over 10 measurements. The data points
are accompanied by a 95% confidence interval.

While widgyts outperforms the implementation of ipywidgets with yt that we wrote for
this paper, there are a number of factors that may affect these timing results beyond loading
the data in the browser. In the Jupyter widgets implementation we are using yt functionality
to recalculate image and convert it into a .png, which is being done in WebAssembly in
widgyts. This is the most extreme example of reducing the time to compute in the browser,
because almost no computation is being performed browser-side in the ipywidgets case.
This calculation was performed locally, so while the data is being transfered continuously to
the browser with the Jupyter widgets implementation, the timing results may become more
disparate with a slower data transfer time from a remote server. Other packages with custom
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tools for interactivity may be faster than the naive implementation with ipywidgets that
we’ve included here. However, these results remain an illustrative example that loading data
into the browser and performing image recalculation in the browser is advantageous.

Conclusions

In this paper we introduced widgyts, a custom widget library to interactively visualize and
explore data with yt. widgyts makes large, sparse, data exploration accessible by passing
data to the browser with WebAssembly, allowing for image generation to occur client-side. As
the number of interactions from the user increases and as datasets vary in sparsity, widgyts’
features will allow for faster responsiveness. This will reduce the use of expensive compute
resources (like those of a lab or campus cluster) and move parameter-tuning events to a local
machine.
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