The Journal of Open Source Software

DOI: 10.21105/joss.01717

Software
= Review 7
= Repository &
= Archive &

Editor: George K. Thiruvathukal

(&4
Reviewers:

= Qrlskoeser
= ©vcl492a

Submitted: 28 July 2019
Published: 01 December 2019

License

Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Graph Transliterator: A graph-based transliteration tool

A. Sean Pue!

1 Linguistics and Germanic, Slavic, Asian, and African Languages, Michigan State University

Summary

Transliteration—the representation of one language or script in the characters or symbols of
another—is a ubiquitous and important operation, used across the humanities, social sciences,
and information sciences, as well as other fields. It enables text to be read by those who do not
know the original alphabet, and also makes languages or related languages written in multiple
scripts legible to readers conversant in only one script (Durrani, Sajjad, Fraser, & Schmid,
2010; Saini, Lehal, & Kalra, 2008). Transliteration enables the standardized organization
and search of resources, as in library systems (Barry, 1997). It also permits the encoding of
essential information often not found in the original script, such as morphological boundaries
and unwritten elements, permitting disambiguation. In natural language processing tasks,
transliteration has opened up new possibilities, especially in machine translation (Prabhakar
& Pal, 2018) and named-entity recognition (Chen, Banchs, Zhang, Duan, & Li, 2018; Merhav
& Ash, 2018).

Graph Transliterator is a Python package and command-line program that makes this
process more accessible by using a standardized method for encoding rules for transliteration.
It lets those rules be entered in an “easy reading” YAML format (Ben-Kiki, Evans, & dét Net,
2009) or directly, using standard Python data types. It also includes bundled transliterators
that are rigorously tested and to which users can contribute. It differs from other rule-based
software (Unicode Consortium, 2019) designed for handling transliteration in two primary
ways. First, other software works directly on an input string, performing operations based
on matches of particular characters. Graph Transliterator instead tokenizes the input
into user-defined transliteration token types. Then it applies transliteration rules defined
for those token types, rather than matching and manipulating the original characters of the
input string. Second, other software requires a defined sequence of transliteration operations.
Graph Transliterator instead automatically orders its transliteration rules so that the rule
involving the largest number of tokens is applied first.

Each instance of Graph Transliterator is parameterized by the acceptable token types of
the input string as well as by transliteration rules. The transliteration token types can be one
or more letters in length, e.g. a, b, or aa. Each of the token types can be assigned to particular
classes, e.g. vowel or consonant. The transliteration rules allow matching of a particular
sequence of one or more tokens. They also allow lookahead and lookbehind matching for
particular tokens or token classes.

Graph Transliterator includes features that accommodate common tasks involved in
transliteration and associated forms of analysis. It includes customizable rules for defining
and handling whitespace, which is often very important in transliteration, as many letters in
non-Roman alphabets change their shape at the start of words. It accepts “on match” rules
for the insertion of output based on which token classes are matched, e.g. the insertion of a
character between two consonants. Graph Transliterator makes it possible for users to
view the details about rule-matching, which may enable certain forms of analysis. It also allows
the matching of all possible rules at a given index, which can be useful in particular analysis
contexts. Each instance of a defined transliterator can be serialized and includes metadata

Pue, (2019). Graph Transliterator: A graph-based transliteration tool. Journal of Open Source Software, 4(44), 1717. https://doi.org/10. 1

21105/joss.01717


https://doi.org/10.21105/joss.01717
https://github.com/openjournals/joss-reviews/issues/1717
https://github.com/seanpue/graphtransliterator
https://doi.org/10.5281/zenodo.3558365
https://luc.edu/cs/people/ftfaculty/gkt.shtml
https://github.com/rlskoeser
https://github.com/vc1492a
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01717
https://doi.org/10.21105/joss.01717

The Journal of Open Source Software

fields. Finally, the software includes full ambiguity checking and produces a warning if more
than one rule could match the same input. As such, Graph Transliterator provides a
rigorous and reproducible framework for transliteration.

(0.415) A\ (0.585)

{'prev_classes": ['wb']}
(0.415) (0.585) (0.585)

Figure 1: An example graph created for the simple case of a Graph Transliterator that takes
as input two token types, a and " " (space), and renders " " as " ", and a as b unless it follows
a token of class wb (for wordbreak), in which case it renders a as B. The rule nodes are in double
circles, and token nodes are single circles. The numbers are the cost of the particular edge, and less
costly edges are searched first. Previous token class (prev_classes) constraints are found on the
edge incident to the leaf rule node.

How It Works

During initialization, a graph is created that is searched to find the best transliteration match
at a particular index in the tokens of an input string. The graph, a directed tree, has nodes
of three types: Start, token, and rule. The Start node is the root. A token node
corresponds to a token being matched. The rule nodes are leaves representing transliteration
rules. Each transliteration rule is assigned a particular cost between one and zero that lessens
with more tokens, using the following cost function:

1
1 + count_of_tokens_in(rule)

)

cost(rule) = log, (1 +

Each edge is assigned a cost corresponding to the least costly transliteration rule leaf node
that can be reached from it. Edges contain constraints that must be met before a node can

Pue, (2019). Graph Transliterator: A graph-based transliteration tool. Journal of Open Source Software, 4(44), 1717. https://doi.org/10. 2

21105/joss.01717


https://doi.org/10.21105/joss.01717
https://doi.org/10.21105/joss.01717

The Journal of Open Source Software

be visited. Before token nodes, these constraints include a token in the input to be matched.
Other constraints include previous and/or following tokens or token classes. To optimize the
search, during initialization an ordered_children dictionary is added to each non-leaf node.
Its values are a list of node indexes sorted by cost and keyed by the token that follows. Any
rule immediately following a node is added to ordered_children as well as to each individual
entry in it. Because of this preprocessing, Graph Transliterator does not need to iterate
through all of the outgoing edges of a node to find the next node to search. Instead, it uses
a best-first search implemented using a stack, and will backtrack if necessary to find the best
match.

Graph Transliterator is available at https://github.com/seanpue/graphtransliterator un-
der the MIT License. Detailed installation and usage instructions are available at
https://graphtransliterator.readthedocs.io.

Acknowledgements

Software development was supported by an Andrew W. Mellon Foundation New Directions
Fellowship (Grant Number 11600613) and by matching funds provided by the College of Arts
and Letters, Michigan State University.

References

Barry, R. K. (1997). ALA-LC romanization tables: Transliteration schemes for non-roman
scripts. Library of Congress & American Library Association. Retrieved from https://www.
loc.gov/catdir/cpso/roman.html

Ben-Kiki, O., Evans, C., & dét Net, |. (2009). YAML Ain't Markup Language (YAML)
Version 1.2. Retrieved from https://yaml.org/spec/1.2/spec.html

Chen, N., Banchs, R. E., Zhang, M., Duan, X., & Li, H. (2018). Report of news 2018 named
entity transliteration shared task. In Proceedings of the seventh named entities workshop (pp.
55-73). doi:10.18653/v1/w18-2409

Durrani, N., Sajjad, H., Fraser, A., & Schmid, H. (2010). Hindi-to-urdu machine translation
through transliteration. In Proceedings of the 48th annual meeting of the association for
computational linguistics (pp. 465-474). Association for Computational Linguistics.

Merhav, Y., & Ash, S. (2018). Design challenges in named entity transliteration. In Pro-
ceedings of the 27th international conference on computational linguistics (pp. 630-640).
Santa Fe, New Mexico, USA: Association for Computational Linguistics. Retrieved from
https://www.aclweb.org/anthology/C18-1053

Prabhakar, D. K., & Pal, S. (2018). Machine transliteration and transliterated text retrieval:
A survey. Sadhana, 43(6), 93. doi:10.1007/s12046-018-0828-8

Saini, T. S., Lehal, G. S., & Kalra, V. S. (2008). Shahmukhi to gurmukhi transliteration
system. In 22nd international conference on on computational linguistics: Demonstration
papers (pp. 177-180). Association for Computational Linguistics.

Unicode Consortium. (2019). General Transforms - International Components for Uni-
code User Guide. Unicode, Inc. Retrieved from http://userguide.icu-project.org/transforms/
general

Pue, (2019). Graph Transliterator: A graph-based transliteration tool. Journal of Open Source Software, 4(44), 1717. https://doi.org/10. 3

21105/joss.01717


https://github.com/seanpue/graphtransliterator
https://graphtransliterator.readthedocs.io
https://www.loc.gov/catdir/cpso/roman.html
https://www.loc.gov/catdir/cpso/roman.html
https://yaml.org/spec/1.2/spec.html
https://doi.org/10.18653/v1/w18-2409
https://www.aclweb.org/anthology/C18-1053
https://doi.org/10.1007/s12046-018-0828-8
http://userguide.icu-project.org/transforms/general
http://userguide.icu-project.org/transforms/general
https://doi.org/10.21105/joss.01717
https://doi.org/10.21105/joss.01717

	Summary
	How It Works
	Acknowledgements
	References

