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Statement of Need

Hamiltonian models are used in a diverse array of systems in natural and engineering sciences,
for example, celestial mechanics, ship dynamics, chemical reactions, and structural mechanics.
In two-degree-of-freedom Hamiltonian systems, the fundamental phase space structures that
partition dynamically distinct trajectories and mediate transitions between multi-stable regions
are stable and unstable invariant manifolds of an unstable periodic orbit (UPO). In two-degree-
of-freedom systems, the phase space is four dimensional and the dynamics is constrained to
the three dimensional energy surface which is partitioned by the two dimensional stable and
unstable manifolds of the UPO around an index-1 saddle equilibrium point (see Wiggins, 2016
for more details). Since in this case, the UPO anchors the invariant manifolds that partition
trajectories, their computation and stability analysis form the starting point for dynamical
systems analysis. UPOsHam is meant to serve this purpose by providing a module of numerical
methods, along with example Hamiltonian systems, for computing the unstable periodic orbits
at any specified total energy as long as their existence is guaranteed. Even though there are
existing numerical methods for computing UPOs, we have found that they either lack in
reproducibility, have a steep learning curve for using the software, or have been written using
closed source software, and at times combination of these (Farantos, 1998; Pollak, Child, &
Pechukas, 1980). Our aim is to provide an open source package that implements some of the
standard methods and shows the results in the context of example Hamiltonian systems. This is
meant as a starting point to integrate other numerical methods in an open source package such
that UPOs computed in dynamical systems papers can be reproduced with minimal tweaking
while providing an exploratory environment to further develop the underlying methods.

Summary

The Python package, UPOsHam, is a collection of three methods in the form of submodules
under uposham for computing UPOs around index-1 saddles in the bottleneck of Hamiltonian
systems. When the form is kinetic (purely momenta-dependent terms) plus potential energy,
the UPOs project as lines on the configuration space (x, y) and connect opposite points of an
equipotential line V (x, y) = E. The three methods described below have been implemented as
example Hamiltonian systems (also available as submodules under uposham) and are described
in §:Examples. The demonstration scripts available in the package show how to import each
of the methods and implement system-specific functions for computing the UPO.
The computed UPOs using the three methods for the coupled quartic Hamiltonian are com-
pared in Figure 1.
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Features: Available Methods

In this package, the user has the option to choose between the three methods described below.
These are implemented in separate scripts with functions that can be modified to define the
total energy (Hamiltonian), potential energy, vector field, Jacobian, and variational equations
(Parker & Chua, 1989).
Turning point

This method is based on finding the UPO by detecting trajectories initialized on the equipo-
tential contour (V (x, y) = E where V (x, y) is the potetial energy function and E is the total
energy) that turn in the opposite directions (Pollak et al., 1980). This method relies on the
fact that for Hamiltonians of the form kinetic plus potential energy, the UPO is the limiting
trajectory that bounces back and forth between the equipotential contour corresponding to
the given total energy. To converge on this limiting trajectory, the turning point method
iteratively decreases the gap between the bounding trajectories that turn in the opposite di-
rections. Detection of the turning point is done using a dot product condition which leads to
stalling of the method beyond a certain tolerance (typically 10−6 in the examples here.)
Turning point based on configuration difference

Based on the turning point approach, we have implemented a new method which shows
stable convergence and does not rely on the dot product formula. Suppose we have found two
initial conditions on a given equipotential contour and they turn in the opposite directions.
If the difference in x-coordinates is small (≈ 10−2), the generated trajectories will approach
the UPO from either sides. If the difference in x-coordinates is large, we can integrate the
Hamilton’s equations for a guess time interval and find the turning point (event using ODE
event detection) at which the trajectories bounce back from the far side of the equipotential
contour in opposite directions. We choose these two points as our initial guess and the
difference of x-coordinates becomes small. Without loss of generality, this method can be
modified to either pick the difference of y-coordinates or a combination of x and y coordinates.
This choice will depend on the orientation of the potential energy surface’s bottleneck in the
configuration space.
Differential correction

This method is based on small (≈ 10−5) corrections to the initial conditions of an UPO
and continuing to desired total energy. The procedure is started from the linear solutions
of the Hamilton’s equations and which generates a small amplitude (≈ 10−5) UPO. This is
fed into the procedure that calculates corrections to the initial condition based on errors in
the terminal condition of the UPO. This leads to convergence within 3 steps in the sense of
the trajectory returning to the initial condition. Once a small amplitude UPO is obtained,
numerical continuation increases the amplitude and, correspondingly, the total energy, while
a combination of bracketing and bisection method computes the UPO at the desired energy
for a specified tolerance (Koon, Lo, Marsden, & Ross, 2011; Naik & Wiggins, 2019).

Example systems

Consider the following two-degree-of-freedom Hamiltonian model where x, y are configuration
space coordinates and px, py are corresponding momenta, V (x, y) is the potential energy, and
T (x, y) is the kinetic energy.

Quartic Hamiltonian

This Hamiltonian can be considered as a low dimensional model of a reaction in a bath where
the coupling is controlled using a parameter. The potential energy is a double-well surface
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and the bath is modeled using a harmonic oscillator.

H(x, y, px, py) =
p2x
2

− α
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)
+
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where α, β, ω, ϵ are free parameters. When ϵ ̸= 0, the system is referred to as the coupled
quartic Hamiltonian, and uncoupled quartic Hamiltonian otherwise.

De Leon-Berne Hamiltonian

This Hamiltonian has been studied as a model of isomerization of a single molecule that
undergoes conformational change (De Leon & Berne, 1981; De Leon & Marston, 1989) and
exhibits regular and chaotic dynamics relevant for chemical reactions.

H(x, y, px, py) = T (px, py) + VDB(x, y) =
p2x

2mA
+

p2y
2mB

+ VDB(x, y) (2)

where the potential energy function VDB(x, y) is

VDB(x, y) =V (x) + V (y) + V (x, y)

V (y) =4y2(y2 − 1) + ϵs

V (x) =Dx [1− exp(−λx)]
2

V (x, y) =4y2(y2 − 1) [exp(−ζλx)− 1]

(3)

The parameters in the model are mA,mB which represent mass of the isomers, while ϵs, Dx

denote the energy of the saddle, dissociation energy of the Morse oscillator, respectively, and
will be kept fixed in this study, λ, ζ denote the range of the Morse oscillator and coupling
parameter between the x and y configuration space coordinates, respectively.

Visualization of UPOs

In Fig. 1, we compare the results for the three methods for the coupled quartic Hamiltonian
to show that they reproduce each other upto visual inspection.
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Figure 1: Comparing the UPOs at different total energies computed using the turning point (left),
turning point based on configuration difference (center), and differential correction (right) methods
for the coupled quartic Hamiltonian. Equipotential contour lines are shown as projection at py = 0.

In Fig. 2, we compare the results for the turning point based on configuration difference
method for the three example Hamiltonians and find they are consistent for different total
energies.
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Figure 2: Comparing the UPOs computed using the turning point based on configuration difference
method at different total energies for the three example Hamiltonian systems: Uncoupled quartic
(left), De Leon-Berne (center), Coupled quartic (right). Equipotential contour lines are shown as
projection at py = 0.

Relation to ongoing research projects

We are developing geometric methods of phase space transport in the context of chemical
reaction dynamics that rely on identifying and computing the UPOs. Manuscripts related to
the Quartic Hamiltonian and De Leon-Berne Hamiltonian are under preparation.
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