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Background

Black holes can be characterized from far away by their spectroscopic gravitational-wave
“fingerprints,” in analogy to electromagnetic spectroscopy of atoms, ions, and molecules. The
idea of using the quasi-normal modes (QNMs) of black holes (BHs) for gravitational-wave
(GW) spectroscopy was first made explicit by Detweiler (1980). QNMs of rotating Kerr BHs
in general relativity (GR) depend only on the mass and spin of the BH. Thus GWs containing
QNMs can be used to infer the remnant BH properties in a binary merger, or as a test of
GR by checking the consistency between the inspiral and ringdown portions of a GW signal
(Abbott & others, 2016; Isi, Giesler, Farr, Scheel, & Teukolsky, 2019).
For a review of QNMs see Berti, Cardoso, & Starinets (2009). A Kerr BH’s QNMs are the
homogeneous (source-free) solutions to the Teukolsky equation (Teukolsky, 1973) subject to
certain physical conditions. The Teukolsky equation can apply to different physical fields
based on their spin-weight s; for gravitational perturbations, we are interested in s = −2
(describing the Newman-Penrose scalar ψ4). The physical conditions for a QNM are quasi-
periodicity in time, of the form ∝ e−iωt with complex ω; conditions of regularity, and that the
solution has waves that are only going down the horizon and out at spatial infinity. Separating
the radial/angular Teukolsky equations and imposing these conditions gives an eigenvalue
problem where the frequency ω and separation constant A must be found simultaneously. This
eigenvalue problem has a countably infinite, discrete spectrum labeled by angular harmonic
numbers (ℓ,m) with ℓ ≥ 2 (or ℓ ≥ |s| for fields of other spin weight), −ℓ ≤ m ≤ +ℓ, and
overtone number n ≥ 0.
There are several analytic techniques, e.g. one presented by Dolan & Ottewill (2009), to
approximate the desired complex frequency and separation constant (ωℓ,m,n(a), Aℓ,m,n(a)) as
a function of spin parameter 0 ≤ a < M (we follow the convention of using units where the
total mass is M = 1). These analytic techniques are useful as starting guesses before applying
the numerical method of Leaver (1985) for root-polishing. Leaver’s method uses Frobenius
expansions of the radial and angular Teukolsky equations to find 3-term recurrence relations
that must be satisfied at a complex frequency ω and separation constant A. The recurrence
relations are made numerically stable to find so-called minimal solutions by being turned
into infinite continued fractions. In Leaver’s approach, there are thus two “error” functions
Er(ω,A) and Ea(ω,A) (each depending on a, ℓ,m, n) which are given as infinite continued
fractions, and the goal is to find a pair of complex numbers (ω,A) which are simultaneous
roots of both functions. This is typically accomplished by complex root-polishing, alternating
between the radial and angular continued fractions.
A refinement of this method was put forth by Cook & Zalutskiy (2014) (see also Appendix A of
Hughes (2000)). Instead of solving the angular Teukolsky equation “from the endpoint” using
Leaver’s approach, one can use a spectral expansion with a good choice of basis functions.
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The solutions to the angular problem are the spin-weighted spheroidal harmonics, and the
appropriate spectral basis are the spin-weighted spherical harmonics. This expansion is written
as (spheroidal on the left, sphericals on the right):

sYℓm(θ, ϕ; aω) =

ℓmax∑
ℓ′=ℓmin(s,m)

Cℓ′ℓm(aω) sYℓ′m(θ, ϕ) ,

where ℓmin = max(|m|, |s|), and the coefficients Cℓ′ℓm(aω) are called the spherical-spheroidal
mixing coefficients (we follow the conventions of Cook & Zalutskiy (2014), but compare Berti
& Klein (2014)). When recast in this spectral form, the angular equation becomes very easy to
solve via standard matrix eigenvector routines, see Cook & Zalutskiy (2014) for details. If one
picks values for (s, ℓ,m, a, ω), then the separation constant A(aω) is returned as an eigenvalue,
and a vector of mixing coefficients Cℓ′ℓm(aω) are returned as an eigenvector. From this new
point of view there is now only one error function to root-polish, Er(ω) = Er(ω,A(ω)) where
the angular separation constant is found from the matrix method at any value of ω. Polishing
roots of Er proceeds via any standard 2-dimensional root-finding or optimization method.
The main advantage of the spectral approach is rapid convergence, and getting the spherical-
spheroidal mixing coefficients “for free” since they are found in the process of solving the
spectral angular eigenvalue problem.

Summary

qnm is an open-source Python package for computing the Kerr QNM frequencies, angular
separation constants, and spherical-spheroidal mixing coefficients, for given values of (ℓ,m, n)
and spin a. There are several QNM codes available, but some (London, 2017) implement
either analytic fitting formulae (which only exist for a range of s, ℓ,m, n) or interpolation
from tabulated data (so the user can not root-polish); others (Berti, 2010) are in proprietary
languages such as Mathematica. We are not aware of any packages that provide spherical-
spheroidal mixing coefficients, which are necessary for multi-mode ringdown GW modeling.
The qnm package includes a Leaver solver with the Cook-Zalutskiy spectral approach to the
angular sector, thus providing mixing coefficients. We also include a caching mechanism to
avoid repeating calculations. When the user wants to solve at a new value of a, the cached data
is used to interpolate a good initial guess for root-polishing. We provide a large cache of low
ℓ,m, n modes so the user can start interpolating right away, and this precomputed cache can
be downloaded and installed with a single function call. We have adapted the core algorithms
so that numba (Lam, Pitrou, & Seibert, 2015) can just-in-time compile them to optimized,
machine-speed code. We rely on numpy (Walt, Colbert, & Varoquaux, 2011) for common
operations such as solving the angular eigenvalue problem, and we rely on scipy (Jones,
Oliphant, Peterson, & others, 2001) for two-dimensional root-polishing, and interpolating
from the cache before root-polishing.
This package should enable researchers to perform ringdown modeling of gravitational-wave
data in Python, without having to interpolate into precomputed tables or write their own
Leaver solver. The author and collaborators are already using this package for multiple active
research projects. By creating a self-documented, open-source code, we hope to alleviate
the high frequency of re-implemenation of Leaver’s method, and instead focus efforts on
making a single robust, fast, high-precision, and easy-to-use code for the whole community.
In the future, this code can be extended to incorporate new features (like special handling of
algebraically special modes) or to apply to more general BH solutions (e.g., solving for QNMs
of Kerr-Newman or Kerr-de Sitter).
Development of qnm is hosted on GitHub and distributed through PyPI; it can be installed
with the single command pip install qnm. Documentation is automatically built on Read
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the Docs, and can be accessed interactively via Python docstrings. Automated testing is run
on Travis CI. The qnm package is part of the Black Hole Perturbation Theory Toolkit.
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