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Summary

Neural networks are computational models that were originally inspired by biological neural
networks like animal brains. These networks are composed of many small computational units
called neurons that perform elementary calculations. Instead of explicitly programming the
behavior of neural networks, these models can be trained to perform tasks, like classifying
images, by presenting them examples. Sufficiently complex neural networks can automatically
extract task-relevant characteristics from the presented examples without having prior knowl-
edge about the task domain, which makes them attractive for many complicated real-world
applications.
Reversible operations have recently been successfully applied to classification problems to re-
duce memory requirements during neural network training. This feature is accomplished by
removing the need to store the input activation for computing the gradients at the back-
ward pass and instead reconstruct them on demand. However, current approaches rely on
custom implementations of backpropagation, which limits applicability and extendibility. We
present MemCNN, a novel PyTorch framework that simplifies the application of reversible
functions by removing the need for a customized backpropagation. The framework contains
a set of practical generalized tools, which can wrap common operations like convolutions and
batch normalization and which take care of memory management. We validate the presented
framework by reproducing state-of-the-art experiments using MemCNN and by comparing
classification accuracy and training time on Cifar-10 and Cifar-100. Our MemCNN imple-
mentations achieved similar classification accuracy and faster training times while retaining
compatibility with the default backpropagation facilities of PyTorch.

Background

Reversible functions, which allow exact retrieval of its input from its output, can reduce mem-
ory overhead when used within the context of training neural networks using backpropagation.
That is since only the output requires to be stored, intermediate feature maps can be freed
on the forward pass and recomputed from the output on the backward pass when required.
Recently, reversible functions have been used with some success to extend the well established
residual network (ResNet) for image classification from He, Zhang, Ren, & Sun (2016) to more
memory efficient invertible convolutional neural networks (Chang et al., 2017; Gomez, Ren,
Urtasun, & Grosse, 2017; Jacobsen, Smeulders, & Oyallon, 2018) showing competitive per-
formance on datasets like Cifar-10, Cifar-100 (Krizhevsky, 2009) and ImageNet (Deng et al.,
2009). However, practical applicability and extendibility of reversible functions for the reduc-
tion of memory overhead have been limited, since current implementations require customized
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backpropagation, which does not work conveniently with modern deep learning frameworks
and requires substantial manual design.
The reversible residual network (RevNet) of Gomez et al. (2017) is a variant on ResNet,
which hooks into its sequential structure of residual blocks and replaces them with reversible
blocks, that creates an explicit inverse for the residual blocks based on the equations from
Dinh, Krueger, & Bengio (2014) on nonlinear independent components estimation. The
reversible block takes arbitrary nonlinear functions F and G and renders them invertible. Their
experiments show that RevNet scores similar classification performance on Cifar-10, Cifar-100,
and ImageNet, with less memory overhead.
Reversible architectures like RevNet have subsequently been studied in the framework of
ordinary differential equations (ODE) (Chang et al., 2017). Three reversible neural networks
based on Hamiltonian systems are proposed, which are similar to the RevNet, but have a
specific choice for the nonlinear functions F and G which are shown stable during training
within the ODE framework on Cifar-10 and Cifar-100.
The i-RevNet architecture extends the RevNet architecture by also making the downscale
operations invertible (Jacobsen et al., 2018), effectively creating a fully invertible architecture
up until the last layer, while still showing good classification accuracy compared to ResNet
on ImageNet. One particularly interesting finding shows that bottlenecks are not a necessary
condition for training neural networks, which shows that the study of invertible networks can
lead to a better understanding of neural network training in general.
The different reversible architectures proposed in the literature (Chang et al., 2017; Gomez et
al., 2017; Jacobsen et al., 2018) have all been modifications of the ResNet architecture and all
have been implemented in TensorFlow (Abadi et al., 2015). However, these implementations
rely on custom backpropagation, which limits creating novel invertible networks and applica-
tion of the concepts beyond the application architecture. Our proposed framework MemCNN
overcomes this issue by being compatible with the default backpropagation facilities of Py-
Torch. Furthermore, PyTorch offers convenient features over other deep learning frameworks
like a dynamic computation graph and simple inspection of gradients during backpropagation,
which facilitates inspection of invertible operations in neural networks.

Methods

The reversible block

The core operator of MemCNN is the reversible block which is an operator which takes a
function f and outputs a function R : X → Y , and an inverse function R−1 : Y → X which
resembles an invertible version of f . Here, x ∈ X and y ∈ Y can be arbitrary tensors with
the same size and number of dimension, i.e.: shape(x) = shape(y). Additionally, it must be
possible to partition the input x = (x1, x2) and output tensors y = (y1, y2) in half, where
each partition has the same shape, i.e.: shape(x1) = shape(x2) = shape(y1) = shape(y2).
Formally, the reversible block operation (1), its inverse (2), and its partition constraints (3)
provide a sufficiently general framework for implementing reversible operations.
For example, if one wants to create a reversible block performing a convolution followed by
a ReLu f , the input x ∈ X is partitioned in (x1, x2) of equal sizes to which this convolution
block f is applied twice (say F and G). The Reversible Block takes these two operators (F
and G) and outputs a “resblock”-like version R of the operator and an explicit inverse R−1.
Effectively the learnable function f is replaced by a learnable approximation R with an explicit
inverse R−1.

R(x) = y (1)
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Figure 1: Graphical representation of additive coupling. The left graph shows the forward computa-
tions and the right graph shows its inverse. First, input x1 and F(x2) are added to form y1, next
x2 and G(y1) are added to form y2. Going backwards, first, G(y1) is subtracted from y2 to obtain
x2; subsequently, F(x2) is subtracted from y1 to obtain x1. Here, + and − stand for respectively
element-wise summation and element-wise subtraction.

R−1(y) = x (2)
with

shape(xi) = shape(x2) = shape(y1) = shape(y2) (3)

Couplings

Using the above definitions we provide two different implementations for the reversible block
in MemCNN, which we will call ‘couplings’. A coupling provides a reversible mapping from
(x1, x2) to (y1, y2). MemCNN supports two couplings: the additive coupling and the affine
coupling.

Additive coupling

Equation 4 represents the additive coupling, which follows the equations of Dinh et al. (2014)
and Gomez et al. (2017). These support a reversible implementation through arbitrary
(nonlinear) functions F and G. These functions can be convolutions, ReLus, etc., as long
as they have matching input and output shapes. The additive coupling is obtained by first
computing y1 from input partitions x1, x2 and function F and subsequently y2 is computed
from partitions y1, x2 and function G. Next, (4) can be rewritten to obtain an exact inverse
function as shown in (5). Figure 1 shows a graphical representation of the additive coupling
and its inverse.

y1 = x1 + F(x2),

y2 = x2 + G(y1)
(4)

x2 = y2 − G(y1),
x1 = y1 −F(x2)

(5)

Affine coupling

Equation (6) gives the affine coupling, introduced by Dinh, Sohl-Dickstein, & Bengio (2016)
and later used by Kingma & Dhariwal (2018), which is more expressive than the additive
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Figure 2: Graphical representation of the affine coupling. The left graph shows the forward com-
putations and the right graph shows its inverse. Here, ⊙, /,+,−, and e stand for element-wise
multiplication, element-wise division, element-wise addition, element-wise subtraction, and element-
wise exponentiation with base e respectively. First, s, t are computed for F(x2), next input x1 is
element-wise multiplied with es and added to t to form y1, subsequently s′, t′ are computed for G(y1)
and then x2 is element-wise multiplied with es

′ and added to t′ to form y2.

coupling. The affine coupling, similar to the additive coupling, supports a reversible imple-
mentations through arbitrary (nonlinear) functions F and G. It also first computes y1 from
input partitions x1, x2 and function F and subsequently it computes y2 from partitions y1, x2

and function G. The difference with the additive coupling is that now the functions F = (s, t)
and G = (s′, t′) each produce two equally sized partitions for scaling and translation, so
shape(x1) = shape(s) = shape(t) = shape(s′) = shape(t′) holds. These components are
then used to compute the output using element-wise product (⊙) and element-wise exponen-
tiation with base e and element-wise addition (+). Equation (6) can be rewritten to obtain an
exact inverse function as shown in (7), which uses element-wise division (/) and element-wise
subtraction (−). Figure 2 shows a graphical representation of the affine coupling and its
inverse.

y1 = x1 ⊙ es + t with F(x2) = (s, t)

y2 = x2 ⊙ es
′
+ t′ with G(y1) = (s′, t′)

(6)

x2 = (y2 − t′)/es
′ with G(y1) = (s′, t′)

x1 = (y1 − t)/es with F(x2) = (s, t)
(7)

Implementation details

The reversible block has been implemented as a torch.nn.Module which wraps other PyTorch
modules of arbitrary complexity for coupling functions F and G. Each memory saving coupling
is implemented using at least one torch.autograd.Function, which provides a custom
forward and backward pass that works with the automatic differentiation system of PyTorch.
Memory savings are implemented at the level of the reversible block and are achieved by
setting the size of the underlying tensor storage to zero for inputs on the forward pass and
restoring the storage size to the original size on the backward pass once it is required for
computing gradients.

Building larger networks

The reversible block R can be chained by subsequent reversible blocks, e.g.: R3 ◦R2 ◦R1 for
reversible blocks R1, R2, R3, which creates a fully reversible chain of operations (see Figure 3).
Additionally, reversible blocks can be mixed with regular functions f , e.g. f ◦ R or R ◦ f for
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Figure 3: Graphical representation of chaining multiple reversible block layers.

reversible block R and regular function f . Note that mixing regular functions with reversible
blocks often breaks the invertibility of reversible chains.

Memory savings

Table 1: Comparison of memory and computational complexity for training a residual net-
work (ResNet) between various memory saving techniques (extended table from Gomez et al.
(2017)). L depicts the number of residual layers in the ResNet.

Technique Authors Memory Com-
plexity

Computational
Complexity

Naive O(L) O(L)

Checkpointing Martens et al. (2012) O(
√
L) O(L)

Recursive Chen et al. (2016) O(logL) O(L logL)
Additive coupling Gomez et al. (2017) O(1) O(L)
Affine coupling Dinh et al. (2016) O(1) O(L)

The reversible block model has an advantageous memory footprint when chained in a sequence
when training neural networks. After computing each R(x) = y by (1) on the forward pass,
input x can be freed from memory and be recomputed on the backward pass, using the inverse
function R−1(y) = x from (2). Once the input is restored, the gradients for the weights and
the inputs can be recomputed as normal using the PyTorch ‘autograd’ solver. This effectively
yields a memory complexity of O(1) in the number of chained reversible blocks. Table 1
shows a comparison of memory versus computational complexity for different memory saving
techniques.
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Experiments and results

Table 2a: Accuracy comparison of the PyTorch implementation (MemCNN) versus the Ten-
sorflow implementation from Gomez et al. (2017) on Cifar-10 and Cifar-100 (Krizhevsky,
2009). Accuracies were approximately similar between implementations.

Cifar-10 Cifar-100
Model Tensorflow PyTorch Tensorflow PyTorch
ResNet-32 92.74 92.86 69.10 69.81
ResNet-110 93.99 93.55 73.30 72.40
ResNet-164 94.57 94.80 76.79 76.47
RevNet-38 93.14 92.80 71.17 69.90
RevNet-110 94.02 94.10 74.00 73.30
RevNet-164 94.56 94.90 76.39 76.90

Table 2b: Training time (in hours:minutes) comparison of the PyTorch implementation (Mem-
CNN) versus the Tensorflow implementation from Gomez et al. (2017) on Cifar-10 and Cifar-
100 (Krizhevsky, 2009). Training times were significantly less for the PyTorch implementation
than for the Tensorflow implementation.

Cifar-10 Cifar-100
Model Tensorflow PyTorch Tensorflow PyTorch
ResNet-32 2:04 1:51 1:58 1:51
ResNet-110 4:11 2:51 6:44 2:39
ResNet-164 11:05 4:59 10:59 3:45
RevNet-38 2:17 2:09 2:20 2:16
RevNet-110 6:59 3:42 7:03 3:50
RevNet-164 13:09 7:21 13:12 7:17

To validate MemCNN, we reproduced the experiments from Gomez et al. (2017) on Cifar-10
and Cifar-100 (Krizhevsky, 2009) using their Tensorflow (Abadi et al., 2015) implementation
on GitHub1, and made a direct comparison with our PyTorch implementation on accuracy
and train time. We have tried to keep all the experimental settings, like data loading, loss
function, train procedure, and training parameters, as similar as possible. All experiments
were performed on a single NVIDIA GeForce GTX 1080 with 8GB of RAM. The accuracies
and training time results are listed in respectively Table 2a and Table 2b. Model performance
of our PyTorch implementation obtained similar accuracy to the TensorFlow implementation
with less training time on Cifar-10 and Cifar-100. All models and experiments are included in
MemCNN and can be rerun for reproducibility.
Table 3 shows memory usage statistics (parameters and activations) during training for all
PyTorch models. Here, the ResNet model uses a conventional implementation and the RevNet
model uses the reversible blocks from MemCNN. The results show that significant activation
memory reduction was obtained using the reversible block implementation (RevNet) when the
number of layers of the models increased.

1https://github.com/renmengye/revnet-public
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Table 3: Model statistics for all PyTorch model implementations on memory usage (param-
eters and activations) in MB during training and the number of layers and parameters. The
ResNet model was implemented using a conventional non-reversible implementation while the
RevNet model uses MemCNN with memory saving reversible blocks. To facilitate comparison,
each row lists the statistics of one ResNet and one RevNet model which have a comparable
number of layers and number of parameters. Significant memory savings for the activations
were observed when using reversible operations (RevNet) as the number of layers increased.
Model parameter memory usage stayed roughly the same between implementations.

Layers Parameters Parameters (MB) Activations (MB)
ResNet RevNet ResNet RevNet ResNet RevNet ResNet RevNet

32 38 466906 573994 1.9 2.3 238.6 85.6
110 110 1730714 1854890 6.8 7.3 810.7 85.7
164 164 1704154 1983786 6.8 7.9 2452.8 432.7

Works using MemCNN

MemCNN has recently been used to create reversible GANs for memory-efficient image-to-
image translation by T. F. A. van der Ouderaa & Worrall (2019). Image-to-image translation
considers the problem of mapping both X → Y and Y → X given two image domains X and
Y using either paired or unpaired examples. In this work, the CycleGAN (Zhu, Park, Isola, &
Efros, 2017) model has been enlarged and extended with an invertible core using the reversible
block, which they call RevGAN. Since the invertible core is weight tied, training the model
for the mapping X → Y automatically trains the model for mapping Y → X. They show
similar or increased performance of RevGAN with respect to similar non-invertible models like
the CycleGAN with less memory overhead during training. The RevGAN model has also been
applied to chest CT images (T. F. A. van der Ouderaa et al., 2019).

Conclusion

We have presented MemCNN, a novel PyTorch framework, for creating and applying reversible
operations for neural networks. It shows similar accuracy on Cifar-10 and Cifar-100 datasets
with the current state-of-the-art method for reversible operations in Tensorflow and provides
overall faster training times. The main features of the framework are smooth integration of
reversible functions with other non-reversible functions by removing the need for a custom
backpropagation and simple wrapping of arbitrary complex non-invertible nonlinear functions.
The presented framework is intended to facilitate the study and application of invertible func-
tions in the context of neural networks.
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