
f90nml - A Python module for Fortran namelists
Marshall L. Ward1, 2

1 NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA 2 Australian National
University, Canberra, Australia

DOI: 10.21105/joss.01474

Software
• Review
• Repository
• Archive

Submitted: 22 May 2019
Published: 14 June 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

f90nml is a Python module used for importing, manipulating, and writing Fortran namelist
files (ISO, 2018). The primary use case for this module is to read a namelist file via the Parser
and save its contents into a Namelist data structure, which is a case-insensitive subclass of
a dict, Python’s intrinsic associative array. The Namelist object can be read and modified
as a standard Python dict, and its contents can be saved as a formatted namelist file.
Fortran continues to be a dominant programming language in high-performance scientific
computing (Müller et al., 2010, p. @ClimateFortranDev:2014) and namelists have been a
part of the language for decades. Namelists were an early method of serializing numerical
data into a human-readable format, although this has become less practical as data sizes
have increased. In more recent times, namelists have been more commonly used for runtime
configuration (Griffies, 2012, pp. @WRF:2019, @QUANTUMESPRESSO:2009, @UM:2019).
Much of the work associated with managing and documenting the runtime parameters over
a large ensemble of runs can in part be reduced to the parsing, modifying, and storing of
namelists.
Python has been a dominant programming language in the sciences in recent years (Nunez-
Iglesias, 2019), consistent with the overall trend across programming (Robinson, 2017), which
has created a growing need for tools in Python which can manage legacy data formats. Given
the importance of Fortran in both historical and modern scientific computing, the ability to
accurately read and manipulate namelists offers the ability to both archive numerical results
from the past and to automate the configuration of future simulations.
An example namelist, such as the one shown below:
&config_nml

input = 'wind.nc'
steps = 864
layout = 8, 16
visc = 1.0e-4
use_biharmonic = .false.

/

would be stored as a Namelist which is equivalent to the following dict:
nml = {

'config_nml': {
'input': 'wind.nc',
'steps': 864,
'layout': [8, 16],
'visc': 0.0001,
'use_biharmonic': False

}
}

Ward, (2019). f90nml - A Python module for Fortran namelists. Journal of Open Source Software, 4(38), 1474. https://doi.org/10.21105/
joss.01474

1

https://doi.org/10.21105/joss.01474
https://github.com/openjournals/joss-reviews/issues/1474
https://github.com/marshallward/f90nml
https://doi.org/10.5281/zenodo.3245482
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01474
https://doi.org/10.21105/joss.01474


The module supports all intrinsic data types, as well as user-defined types and multidimensional
arrays. User-defined types are interpreted as a hierarchical tree of Namelists. Multidimen-
sional arrays are saved as nested lists of lists, with the most innermost lists corresponding to
the first dimensional index in Fortran. This reverses the index order in Python, but corresponds
to the usual ordering in memory.
Because a value’s data type is assigned by the executable at runtime and is not specified in the
namelist, the data type of each value must be inferred by the Parser, usually based on the
strictest interpretation of the value. Weak typing rules within namelists, such as the optional
use of string delimiters or the multiple representations of logical values, can lead to further
ambiguity. f90nml provides various control flags to manage these cases. A truly ambiguous
value will typically be interpreted as a literal string, rather than raise an error.
Another limitation of the namelist format is the use of a arbitrary start index in a Fortran
array, which may be assigned at runtime but not specified in the namelist. For this reason,
arrays are assumed to begin at the lowest explicit index which is defined in the namelist, and
is stored as metadata. For example, if we parse the namelist below:

&a_nml
x(3:4) = 1.0, 1.1
x(6:7) = 1.2, 1.3

/

then it would be saved internally as the following 0-based Python list:
nml = {

'a_nml': {
'x': [1.0, 1.1, None, 1.2, 1.3]

}
'_start_index': {'x': 3}

}

If the start index is unspecified, as in the first example, then the index is also unspecified within
the Namelist, although the list remains 0-based within the Python environment. Additional
control flags are also provided to control the start index.
f90nml includes a patch feature, which allows one to modify the values of an existing namelist
while retaining its comments or existing whitespace formatting. There is some limited ability
to add or remove values during patching.
f90nml also includes the following additional features:

• A command line tool for working in a shell environment
• Lossless conversion between Namelist and dict types
• Support for legacy Fortran namelist formats
• Conversion between JSON and YAML output
• Configuration of the output formatting rules
• Handling of repeated groups within a single namelist

Development is supported by an extensive test suite with a very high level of code coverage,
ensuring compatibility of existing namelists over future releases.

Acknowledgements

Development of f90nml has been ongoing for several years, and was created to support
research activities of the Australian Centre of Excellence in Climate System Science (ARCCSS)
at the Australian National University.

Ward, (2019). f90nml - A Python module for Fortran namelists. Journal of Open Source Software, 4(38), 1474. https://doi.org/10.21105/
joss.01474

2

https://doi.org/10.21105/joss.01474
https://doi.org/10.21105/joss.01474


This project is sustained by the feedback from its users, and continues to benefit from contri-
butions from its userbase, for which the author is immensely grateful.

References

Allen, T., Bell, V., Bellouin, N., Bodas-Salcedo, A., Cresswell, P., Dadson, S., Dalvi, M., et
al. (2019). Unified Model documentation paper 000 (p. 91). Met Office.
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D.,
et al. (2009). QUANTUM ESPRESSO: A modular and open-source software project for
quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395–502.
doi:10.1088/0953-8984/21/39/395502
Griffies, S. M. (2012). Elements of the Modular Ocean Model (MOM) (p. xiii + 632).
NOAA/Geophysical Fluid Dynamics Laboratory.
ISO. (2018). ISO/IEC 1539-1:2018: Information Technology – Programming languages –
Fortran – Part 1: Base language (p. 630). Geneva, Switzerland: International Organization
for Standardization.
Méndez, M., Tinetti, F. G., & Overbey, J. L. (2014). Climate models: Challenges for Fortran
development tools. In Proceedings of the 2nd international workshop on software engineering
for high performance computing in computational science and engineering, SE-HPCCSE ’14
(pp. 6–12). Piscataway, NJ, USA: IEEE Press. doi:10.1109/SE-HPCCSE.2014.7
Müller, M., Waveren, M. van, Lieberman, R., Whitney, B., Saito, H., Kumaran, K., Baron, J.,
et al. (2010). SPEC MPI2007 – an application benchmark suite for parallel systems using MPI.
Concurrency and Computation: Practice and Experience, 22, 191–205. doi:10.1002/cpe.1535
Nunez-Iglesias, J. (2019, April 12). Counting programming language mentions in astronomy
papers. Retrieved from https://github.com/jni/programming-languages-in-astronomy
Robinson, D. (2017, September 6). The incredible growth of Python. Retrieved from https:
//stackoverflow.blog/2017/09/06/incredible-growth-python/
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., et al.
(2019). A description of the Advanced Research WRF Version 4. doi:10.5065/1dfh-6p97

Ward, (2019). f90nml - A Python module for Fortran namelists. Journal of Open Source Software, 4(38), 1474. https://doi.org/10.21105/
joss.01474

3

https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1109/SE-HPCCSE.2014.7
https://doi.org/10.1002/cpe.1535
https://github.com/jni/programming-languages-in-astronomy
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://doi.org/10.5065/1dfh-6p97
https://doi.org/10.21105/joss.01474
https://doi.org/10.21105/joss.01474

	Summary
	Acknowledgements
	References

