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Background

You may not be aware of it, but your brain is orchestrating a complex ballet of activity while
reading this sentence. Whether it is following a dot or reading a sentence; the brain is eval-
uating input and sending motoric output to perform optimally/efficiently. We can measure
this flurry of activity using functional Magnetic Resonance Imaging (fMRI). Traditional fMRI
analysis emphasizes what regions are “activated/deactivated” during a task, but it does not
provide information about which regions are acting in synchrony or are being segregated.
Knowing the synchronous/segregated brain regions during a task gives insights on the po-
tential organization of the brain. NiBetaSeries seeks to provide information about the
organization of the brain by correlating activation/deactivation patterns between brain
regions during a task.
To understand NiBetaSeries we need to answer two questions: what is a “beta” (or parameter
estimate) and how can we analyze a series of betas? We have already mentioned betas by
another name, activation/deactivation. The term beta comes from its use in the General
Linear Model (GLM), which is an extension of linear regression. fMRI signal evoked by
a stimulus follows a relatively stereotyped shape from the Blood Oxygen Level Dependent
(BOLD) response, which is reasonably modeled with a double-gamma function. The overall
amplitude (i.e., activation/deactivation) of the double gamma function is determined by the
beta coefficient. Thus larger betas mean greater activation and smaller or negative betas
mean less activation or deactivation relative to a baseline. Traditional fMRI analysis will
group together all trials of a single type and give them all one beta estimate, where variance
between trials is treated as noise. NiBetaSeries, on the other hand, gives each trial its own
beta estimate treating the variance between trials as the signal of interest.
Two common methods for deriving single trial beta estimates are least squares all (LSA) and
least squares separate (LSS) (Mumford, Turner, Ashby, & Poldrack, 2012; Turner, Mumford,
Poldrack, & Ashby, 2012). LSA places all the trials in the same GLM, where each trial is a
separate predictor. LSA works well when the trials are far apart in time because the BOLD
response takes a long time to return to baseline. When the trials are close together, however,
the bold responses start to overlap and the GLM cannot accurately attribute the variance in
the fMRI data to a single trial, leading to unreliable beta estimates. LSS tackles this problem
by making as many GLMs as there are trials. For each trial, a GLM is created with two
predictors: one is the trial of interest and the second is the combination of all the other trials.
LSS reduces the amount of overlap (or more accurately correlation) between predictors, leading
to more reliable individual beta estimates. NiBetaSeries currently implements LSS making the
software a reasonable analysis choice for experiments with trials that occur close together
(e.g., 3-7 seconds apart on average). The output of LSA or LSS is a beta series for each voxel
in the dataset.
There is a wealth of analysis methods applicable to beta series datasets. To review the
structure of our data, we have a beta estimate for each trial within every voxel in the brain,
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resulting in a 4-dimensional (4D) dataset. The first three dimensions represent the voxel
dimensions, and the 4th dimension represents the number of trials. For many intents and
purposes, the 4D beta series can be analyzed similarly to a 4D resting state dataset where
the 4th dimension represents time. Traditional analysis strategies applied to resting state
such as seed based correlation, independent components analysis, regional homogeneity, and
graph theory can be applied to beta series (Cole, Smith, & Beckmann, 2010; Wijk, Stam, &
Daffertshofer, 2010). Recycling these methods for beta series provides a new lens to observe
the organization of the brain during a task and may lead to additional insights.

Software Overview

NiBetaSeries presents as a command line utility written in Python following the template of
a BIDS-App (Gorgolewski et al., 2017). NiBetaSeries is available on pypi and as an container
on dockerhub with comprehensive documentation complete with an interactive example. The
primary way to interact with NiBetaSeries is typing nibs in the command line. The ba-
sic workflow of NiBetaSeries follows these steps (the files can be found in the workflows
directory):

1) base.py: Read and validate necessary inputs (a minimally processed fMRI file, a brain
mask, an events file specifying the onsets, duration, and the trial type, an atlas parcel-
lation, and a table connecting the numbers in the atlas parcellation with names of the
regions).

2) model.py: Construct and execute GLMs using LSS (with additional confound predictors
optionally added) generating a beta series (a list of betas for each voxel).

3) analysis.py: Apply atlas parcellation to data averaging betas within regions for each
trial.

4) analysis.py: Correlate each region’s list of betas with every other region.
5) analysis.py: r-z transform the correlations and output a symmetric correlation matrix

in a tsv file.

The correlation matrix from NiBetaSeries can be used for graph theoretical applications,
specific region-region correlations across different trial types, and other analyses.
NiBetaSeries is not the first or only piece of software that measures task related correlations
in the brain. There are two other packages known to the authors: BASCO and Pybetaseries
(Göttlich, Beyer, & Krämer, 2015; R. Poldrack, 2014). BASCO (BetA Series COrrelations)
is a Matlab toolbox that calculates task correlations, but is designed for slow event related
designs (e.g., trials occur more than 10 seconds apart). Pybetaseries is a Python script that is
designed for fast event related designs (like NiBetaSeries), but is no longer actively maintained.
Given the drawbacks of the alternatives, NiBetaSeries justifies its existence and utility to the
neuroscience field.
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