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Summary

Adjoint models play an important role in scientific computing. They enable for instance sen-
sitivity and stability analysis, goal-oriented mesh adaptivity and optimisation. However, the
derivation and implementation of adjoint models is challenging, especially for models gov-
erned by non-linear or time-dependent partial differential equations (PDEs). In (Farrell, Ham,
Funke, & Rognes, 2013), the authors proposed to automatically derive adjoint models through
high-level algorithmic differentiation, where the forward model is considered as a sequence of
variational problems. The implementation, named dolfin-adjoint, automatically and robustly
derives adjoint models for models written in the finite element software FEniCS (Logg, Mardal,
Wells, & others, 2012). However, the assumption that the model consists of a sequence of
variational problems can be limiting. For instance when considering Dirichlet boundary con-
ditions that are not explicitly stated in the variational formulation, when considering complex
functionals that cannot be represented as an integral, or when coupling FEniCS to other
non-PDE models.
We present a new implementation of dolfin-adjoint that overcomes these limitations. The
core of our implementation is a generic, operator-overloading based, algorithmic differentiation
tool for Python called pyadjoint. To apply pyadjoint to a Python module, one implements
a pyadjoint.Block subclass for each module function which can recompute the function with
new inputs and compute the function’s derivatives. During runtime, pyadjoint builds a graph
of Block instances, and applies the chain rule to automatically compute gradients and Hessian
actions. Further, pyadjoint includes gradient verification tools and an optimisation framework
that interfaces external packages such as scipy, ipopt, moola and ROL.
To support automated adjoints for FEniCS and Firedrake (Rathgeber et al., 2017) models, we
overloaded their user-interface functions. In FEniCS and Firedrake, variational problems are
represented in the domain-specific language UFL (Alnæs, Logg, Ølgaard, Rognes, & Wells,
2014). UFL allows the definition and manipulation of discrete variational formulations, which
we leverage to automatically obtain the desired equations in a format that can be solved by
FEniCS/Firedrake. This allows us to efficiently derive the adjoint and tangent-linear equations
and solve them using the existing solver methods in FEniCS/Firedrake, as described in (Farrell
et al., 2013). In addition, we have implemented support for computing the adjoint solution
at the boundary, which enables the automatic differentiation of PDE solutions with respect
to strongly imposed Dirichlet boundary conditions.
The dolfin-adjoint repository contains a wide range of tests and demos. The demos are
documented and available at www.dolfin-adjoint.org.
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