
dolfin-adjoint 2018.1: automated adjoints for FEniCS
and Firedrake
Sebastian K. Mitusch1, Simon W. Funke1, and Jørgen S. Dokken1

1 Simula Research LaboratoryDOI: 10.21105/joss.01292

Software
• Review
• Repository
• Archive

Submitted: 31 December 2018
Published: 18 June 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Adjoint models play an important role in scientific computing. They enable for instance sen-
sitivity and stability analysis, goal-oriented mesh adaptivity and optimisation. However, the
derivation and implementation of adjoint models is challenging, especially for models gov-
erned by non-linear or time-dependent partial differential equations (PDEs). In (Farrell, Ham,
Funke, & Rognes, 2013), the authors proposed to automatically derive adjoint models through
high-level algorithmic differentiation, where the forward model is considered as a sequence of
variational problems. The implementation, named dolfin-adjoint, automatically and robustly
derives adjoint models for models written in the finite element software FEniCS (Logg, Mardal,
Wells, & others, 2012). However, the assumption that the model consists of a sequence of
variational problems can be limiting. For instance when considering Dirichlet boundary con-
ditions that are not explicitly stated in the variational formulation, when considering complex
functionals that cannot be represented as an integral, or when coupling FEniCS to other
non-PDE models.
We present a new implementation of dolfin-adjoint that overcomes these limitations. The
core of our implementation is a generic, operator-overloading based, algorithmic differentiation
tool for Python called pyadjoint. To apply pyadjoint to a Python module, one implements
a pyadjoint.Block subclass for each module function which can recompute the function with
new inputs and compute the function’s derivatives. During runtime, pyadjoint builds a graph
of Block instances, and applies the chain rule to automatically compute gradients and Hessian
actions. Further, pyadjoint includes gradient verification tools and an optimisation framework
that interfaces external packages such as scipy, ipopt, moola and ROL.
To support automated adjoints for FEniCS and Firedrake (Rathgeber et al., 2017) models, we
overloaded their user-interface functions. In FEniCS and Firedrake, variational problems are
represented in the domain-specific language UFL (Alnæs, Logg, Ølgaard, Rognes, & Wells,
2014). UFL allows the definition and manipulation of discrete variational formulations, which
we leverage to automatically obtain the desired equations in a format that can be solved by
FEniCS/Firedrake. This allows us to efficiently derive the adjoint and tangent-linear equations
and solve them using the existing solver methods in FEniCS/Firedrake, as described in (Farrell
et al., 2013). In addition, we have implemented support for computing the adjoint solution
at the boundary, which enables the automatic differentiation of PDE solutions with respect
to strongly imposed Dirichlet boundary conditions.
The dolfin-adjoint repository contains a wide range of tests and demos. The demos are
documented and available at www.dolfin-adjoint.org.

Acknowledgements

We would like to thank Imperial College London and the Firedrake team for their contributions
to pyadjoint and dolfin-adjoint. A special thanks to Lawrence Mitchell for his work on the

Mitusch et al., (2019). dolfin-adjoint 2018.1: automated adjoints for FEniCS and Firedrake. Journal of Open Source Software, 4(38), 1292.
https://doi.org/10.21105/joss.01292

1

https://doi.org/10.21105/joss.01292
https://github.com/openjournals/joss-reviews/issues/1292
https://bitbucket.org/dolfin-adjoint/pyadjoint
https://doi.org/10.5281/zenodo.3247690
http://creativecommons.org/licenses/by/4.0/
www.dolfin-adjoint.org
https://doi.org/10.21105/joss.01292


Firedrake specific implementations, and David Ham for his input on strong Dirichlet boundary
condition controls. Sebastian Mitusch was supported by the Norwegian Ministry of Education
and Research. Simon Funke and Jørgen Dokken were supported by the Research Council
of Norway through a FRIPRO grant, project 251237. Finally, thanks to everyone who has
contributed to the pyadjoint repository.

References

Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., & Wells, G. N. (2014). Unified form
language: A domain-specific language for weak formulations of partial differential equations.
ACM Transactions on Mathematical Software (TOMS), 40(2), 9. doi:10.1145/2566630
Farrell, P. E., Ham, D. A., Funke, S. W., & Rognes, M. E. (2013). Automated derivation
of the adjoint of high-level transient finite element programs. SIAM Journal on Scientific
Computing, 35(4), C369–C393. doi:10.1137/120873558
Logg, A., Mardal, K.-A., Wells, G. N., & others. (2012). Automated solution of differential
equations by the finite element method. Springer. doi:10.1007/978-3-642-23099-8
Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., McRae, A. T., Bercea, G.-T.,
et al. (2017). Firedrake: Automating the finite element method by composing abstractions.
ACM Transactions on Mathematical Software (TOMS), 43(3), 24. doi:10.1145/2998441

Mitusch et al., (2019). dolfin-adjoint 2018.1: automated adjoints for FEniCS and Firedrake. Journal of Open Source Software, 4(38), 1292.
https://doi.org/10.21105/joss.01292

2

https://doi.org/10.1145/2566630
https://doi.org/10.1137/120873558
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1145/2998441
https://doi.org/10.21105/joss.01292

	Summary
	Acknowledgements
	References

