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Summary

Mathematical optimization is the discipline dealing with the determination of the best (or al-
most best) decision with respect to a specific cost function and to a set of constraints on the
decision. Bilevel optimization is a class of mathematical optimization problems with the opti-
mality conditions of a lower-level problem embedded in the constraints. BilevelOptimization.jl
is a toolbox built on top of the JuMP.jl ecosystem for mathematical optimization (Dunning,
Huchette, & Lubin, 2017). Bilevel optimization is used to tackle various problems in areas
such as power systems, security applications, network design or market equilibria. See Dempe
(2018) for an overview of applications and recent formulations and theoretical progress.
The computation of an optimal solution to a bilevel problem is in general hard. Even with
all the constraints and the objectives at the two levels being linear, the resulting problem
is non-convex and NP-hard, with a possibly disjoint feasible set. Optimization practitioners
often rely on problem-specific properties and modeling techniques or heuristics. The goal of
this package is to offer a both flexible model of a general class of bilevel problems and a solver
which is compatible with the JuMP workflow.

Bilevel optimization

A generic formulation for a bilevel problem is:

min_x F(x,y)
s.t. G_k(x,y) <= 0 for k in {1..mu}

y in arg min_y {f(x,y)
s.t.
g_i(x,y) <= 0 for i in {1..ml}
}

If the lower-level problem is convex, i.e., if the functions f(x, y) and gi(x, ·) are convex and
if Slater’s qualification constraints hold, the Karush-Kuhn-Tucker conditions can be used to
characterize the optimality at the lower-level.
For most lower-level problems, there are several optimal solutions (different solutions yielding
the same optimal value of the objective). Several methodologies have been developed for such
cases, the two primary approaches being the optimistic and pessimistic bilevel formulations
(Dempe, 2018), regularizing the set-valued problem by guaranteeing the uniqueness of the
lower-level solution. The approach used in BilevelOptimization.jl is the optimistic one.
This package is initially designed for a problem of the form:
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min_x cx^T x + cy^T y
s.t. G x + H y <= q

x >= 0
x[j] integer for j in Jx
y in arg min_y {d^T y + x^T F y

s.t. A x + B y <= b
y >= 0
}

The single-level reduction of the optimistic version of this problem is:

min_{x,y,lambda} cx^T x + cy^T y
s.t. G x + H y <= q

A x + B y <= b
x, y >= 0
x[j] integer for j in Jx
d + F^T x + B^T * lambda = 0
lambda[i] * (b - A x - B y)[i] = 0 for i in {1..ml}

The last equation is a complementarity constraint, corresponding to the fact that at least one
of (λi, si) has to be equal to zero, where si is the slack variable associated with constraint i.
This non-convex, non-linear constraint cannot be tackled efficiently by common optimization
solvers and needs to be re-formulated. The two common approaches are linearization using a
binary variable and “big-M” primal and dual upper bounds and Special Ordered Sets of type 1
(SOS1) (Pineda & Morales, 2019). A special ordered set 1 is a group of two or more variables,
of which at most one can be non-zero. Mixed-Integer Linear solvers use this information for
branching directly on the two variables. In the case of the bilevel problem presented above, the
sets contain the slack variable and dual variable associated with each lower-level constraint,
forcing at least one of them to zero.

Types and methods for bilevel optimization

The data for a bilevel linear problems are stored in the BilevelLP structure, with the same
notation as used above. A JuMP.Model can be built from scratch from these data or passed
on to the build_blp_model function which adds the lower-level feasibility and optimality
constraints. This function supports different signatures through multiple dispatch. To build
the model from scratch using the data from BilevelLP, the function is called as follows:

build_blp_model(bp::BilevelLP, solver; [comp_method])

It returns a tuple (m, x, y, lambda, s) with:

• m: the JuMP model,
• x: the upper-level vector of variables,
• y: the lower-level vector of variables,
• lambda: the lower-level dual variables, and
• s: the lower-level slack variables.

Other signatures allow users to modify an already-existing JuMP model without storing every
constraint or variable into a BilevelLP structure.
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All signatures of the build_blp_model function include a keyword argument comp_method
for the choice of method to tackle complementarity constraints. The two methods mentioned
in the previous section are represented as types, SOS1Complementarity and BoundComple
mentarity. For the second option, primal and dual bounds can either be scalars or vectors
to use bounds adapted to each constraint. Some problem-specific methods are often used in
the literature to handle complementarity constraints in an efficient way. Users of the package
can define a new type, optionally sub-typed from ComplementarityMethod, and define the
following function:

add_complementarity_constraint(m, cm::CM, s, lambda, y, sigma)

where CM is the complementarity constraint type.

Application to toll-setting problems

The toll-setting problem is a class of bilevel optimization where the two levels of decision are
taken on a graph (Brotcorne, Labbé, Marcotte, & Savard, 2001). It belongs to the more
general framework of network pricing problems with applications in road management (Harks,
Schröder, & Vermeulen, 2019) or telecommunication network reliability (Hayrapetyan, Tardos,
& Wexler, 2007).
In this problem, the upper level decides on a toll to apply on some arcs of a directed graph.
Each arc has an initial cost and a cost resulting from an upper-level decision. The lower-level
problem then consists in finding the minimum-cost flow from a source to a sink with a minimum
circulating flow. This problem can be entirely modeled using the framework presented above,
using a composite datatype defined in the package for holding all required data, and allowing
users to bypass the re-formulation of the model from its algebraic JuMP form to a standard
form. Users can describe their problem using the BilevelFlowProblem struct containing:

• The initial matrix of arc costs init_cost,
• A boolean matrix indicating which edges are taxable taxable_edges,
• The capacity matrix capacities,
• The different levels of tax that can be applied to each arc tax_options, and
• The minimum amount of flow that the follower needs to pass from source to sink

minflow

Building the JuMP.Model is done similarly to the generic bilevel problem, using the following
signature:

build_blp_model(bfp::BilevelFlowProblem, solver; [comp_method])

More general problem formulations

Even though BilevelOptimization.jl is designed for linear-linear bilevel problems which can be
described by the BilevelLP type, the API allows users to bypass the upper-level problem
specification. They can provide a pre-built JuMP.Model with the upper-level objective and
constraints already set, for instance for quadratic or conic upper level formulations. The
only requirement is that the solver must support both the type of constraints specified in
the model and in the comp_method. This flexibility allows users to leverage some recent
advances on mixed-integer convex optimization and solvers tackling these problems (Lubin,
Yamangil, Bent, & Vielma, 2016). As of the current state of BilevelOptimization.jl, the only
restricted part of the model is the linear-quadratic lower-level, which is required to exploit
Karush-Kuhn-Tucker conditions.
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