

OApackage: A Python package for generation and analysis of orthogonal arrays, optimal designs and conference designs

Pieter Thijs Eendebak^{1, 2} and Alan Roberto Vazquez^{1, 3}

1 Department of Engineering Management, University of Antwerp, Belgium 2 Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 155, 2600 AD Delft, The Netherlands 3 Department of Biosystems, KU Leuven, Leuven, Belgium

DOI: 10.21105/joss.01097

Software

- Review I^A
- Repository ♂
 Archive ♂

Submitted: 11 November 2018 Published: 27 February 2019

License

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC-BY).

Summary

Orthogonal arrays, optimal designs and conference designs are important tools for the design of experiments (Elster & Neumaier, 1995), (Hedayat, Sloane, & Stufken, 2012), (Wu & Hamada, 2009). The OApackage (Orthogonal Array package) contains functionality to generate and analyse these types of designs. More specifically, the OApackage allows the user to:

- Efficiently generate orthogonal arrays, optimal designs and conference designs
- Reduce the designs to their normal form and perform isomorphism testing
- Calculate a wide variety of statistical properties of the designs

The data analysis of the experiments conducted using the generated designs is left to existing statistical software such as R (R Core Team, 2018) and JMP (Wikipedia contributors, 2018).

To generate orthogonal arrays and conference designs, the OApackage uses an exhaustive generation procedure with isomorphism pruning (Schoen, Eendebak, & Nguyen, 2010), (Schoen, Eendebak, & Goos, 2019). To generate optimal designs, the package uses a flexible optimality criterion and a coordinate-exchange optimization algorithm (Eendebak & Schoen, 2017).

The reduction of the designs to their normal form is done by either reduction to a minimal form (such as lexicographically minimal in columns or delete-one-factor projection normal form (P. Eendebak, 2014)) or reduction using graph algorithms. For designs with a specified isomorphism group, the OApackage provides a generic interface to the graph reduction algorithms that effectively perform isomorphism testing and reduction to normal form.

The OApackage evaluates the orthogonal arrays, optimal designs and conference designs using well-known statistical criteria. For instance, the package can calculate the generalized wordlength pattern and confounding frequency vector (Tang & Deng, 1999), which are based on the J-characteristics (Deng & Tang, 1999), and the number of degrees of freedom available for estimating selected factors' effects. The package can also calculate the F_4 vector of conference designs (Schoen et al., 2019) and the D-efficiency of optimal designs (Goos & Jones, 2011).

The OApackage consists of a C++ library with a Python interface generated by SWIG. The source code is available at https://github.com/eendebakpt/oapackage. Examples for

both generation and analysis of designs are available in the OApackage documentation (P. Eendebak & Vazquez, 2018). The Orthogonal Array package website (P. Eendebak, 2018) contains a large collection of orthogonal arrays, optimal designs and conference designs generated with the package.

Acknowledgements

We acknowledge useful discussions with Eric Schoen during the development of this project.

References

Deng, L.-Y., & Tang, B. (1999). Generalized resolution and minimum aberration criteria for Plackett-Burman and other nonregular factorial designs. *Statistica Sinica*, 9(4), 1071–1082. Retrieved from http://www.jstor.org/stable/24306636

Eendebak, P. (2014). A canonical form for non-regular arrays based on generalized worldlength pattern values of delete-one-factor projections.

Eendebak, P. (2018). The Orthogonal Array Package: Results. Retrieved January 1, 2019, from http://www.pietereendebak.nl/oapackage/

Eendebak, P. T., & Schoen, E. D. (2017). Two-level designs to estimate all main effects and two-factor interactions. *Technometrics*, 59(1), 69-79. doi:10.1080/00401706.2016. 1142903

Eendebak, P., & Vazquez, A. R. (2018). The Orthogonal Array package. Retrieved from https://oapackage.readthedocs.io/en/latest/

Elster, C., & Neumaier, A. (1995). Screening by conference designs. *Biometrika*, 82(3), 589–602. doi:10.1093/biomet/82.3.589

Goos, P., & Jones, B. (2011). Optimal design of experiments: A case study approach. doi:10.1002/9781119974017

Hedayat, A. S., Sloane, N. J. A., & Stufken, J. (2012). Orthogonal arrays: Theory and applications. Springer Science & Business Media.

R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org

Schoen, E. D., Eendebak, P. T., & Goos, P. (2019). A classification criterion for definitive screening designs. Ann. Statist., 47(2), 1179–1202. doi:10.1214/18-AOS1723

Schoen, E. D., Eendebak, P. T., & Nguyen, M. V. M. (2010). Complete enumeration of pure-level and mixed-level orthogonal arrays. *Journal of Combinatorial Designs*, 18(2), 123–140. doi:10.1002/jcd.20236

Tang, B., & Deng, L.-Y. (1999). Minimum G_2 -aberration for nonregular fractional factorial designs. The Annals of Statistics, 27(6), 1914–1926. doi:10.1214/aos/1017939244

Wikipedia contributors. (2018). JMP (statistical software) — Wikipedia, the free encyclopedia. Retrieved from https://en.wikipedia.org/w/index.php?title=JMP_(statistical_software)&oldid=858334218

Wu, C., & Hamada, M. (2009). Experiments: Planning, analysis and optimization. Wiley.