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Summary

The purpose of the TaylorSeries.jl package is to provide a framework to exploit Taylor
polynomials in one and several variables in the Julia programming language (Bezanson,
Edelman, Karpinski, & Shah, 2017). It can be thought of as providing a primitive CAS
(computer algebra system), which works numerically and not symbolically. The pack-
age allows the user to define dense polynomials p(x) of one variable and p(x) of several
variables with a specified maximum degree, and perform operations on them, including
powers and composition, as well as series expansions for elementary functions of poly-
nomials, for example exp[p(x)], where techniques of automatic differentiation are used
(Haro, Canadell, Figueras, Luque, & Mondelo, 2016; Tucker, 2011). Differentiation and
integration are also implemented.

Two basic immutable types are defined, Taylor1{T} and TaylorN{T}, which represent
polynomials in one and several variables, respectively; the maximum degree is a field of
the types. These types are parametrized by the type T of the polynomial coefficients; they
essentially consist of one-dimensional arrays of coefficients, ordered by increasing degree.

In the case of TaylorN, the coefficients are HomogeneousPolynomials, which in turn are
vectors of coefficients representing all monomials with a given number of variables and
order (total degree), ordered lexicographically. Higher degree polynomials require more
memory allocation, especially for several variables; while we have not extensively tested
the limits of the degree of the polynomials that can be used, Taylor1 polynomials up to
degree 80 and TaylorN polynomials up to degree 60 in 4 variables have been successfully
used. Note that the current implementation of multi-variable series builds up extensive
tables in memory which allow to speed up the index calculations.

Julia’s parametrized type system allows the construction of Taylor series whose coefficient
type is any subtype of the Number abstract type. Use cases include complex numbers,
arbitrary precision BigFloats (Fousse, Hanrot, Lefèvre, Pélissier, & Zimmermann, 2007),
Intervals (Sanders & Benet, 2019), ArbFloats (Sarnoff, 2019), as well as Taylor1 and
TaylorN objects themselves.

TaylorSeries.jl is the main component of TaylorIntegration.jl (Pérez-Hernández
& Benet, 2019), whose aim is to perform accurate integration of ODEs using the Taylor
method, including jet transport techniques, where a small region around an initial con-
dition is integrated. It is also a key component of TaylorModels.jl (Benet & Sanders,
2019), whose aim is to construct rigorous polynomial approximations of functions.
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Examples

We present three examples to illustrate the use of TaylorSeries.jl. Other examples, as
well as a detailed user guide, can be found in the documentation.

Hermite polynomials

As a first example we describe how to generate the Hermite polynomials (“physicist’s”
version) up to a given maximum order. Firstly we directly exploit the recurrence relation
satisfied by the polynomials.

In [1]: using TaylorSeries

displayBigO(false)

function hermite_polynomials(::Type{T}, nmax::Int) where {T <: Integer}

x = Taylor1(T, nmax) # Taylor variable

H = fill(x, nmax + 1) # vector of Taylor series to be overwritten

H[1] = 1 # order 0

H[2] = 2x # order 1

for n in 2:nmax
# recursion relation for order n:

H[n+1] = 2x * H[n] - 2(n-1) * H[n-1]
end

return H
end

hermite_polynomials(n) = hermite_polynomials(Int, n);

H = hermite_polynomials(10);

function hermite_polynomial(n::Int)
@assert 0  n  length(H) "Not enough Hermite polynomials generated"
return H[n+1]

end

hermite_polynomial(6)

Out[1]: - 120 + 720 t2 - 480 t4 + 64 t6

1

The example above can be slightly modified to compute, for example, the 100th Hermite
polynomial. In this case, the coefficients will be larger than 263 − 1, so the modular
behavior, under overflow of the standard Int64 type, will not suffice. Rather, the
polynomials should be generated with hermite_polynomials(BigInt, 100) to ensure
the use of arbitrary-length integers.

Using a generating function

As a second example, we describe a numerical way of obtaining the Hermite polynomi-
als from their generating function: the nth Hermite polynomial corresponds to the nth
derivative of the function exp(2t x− t2).
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In [2]: G (x,t) = exp(2t * x - t^2) # generating function; G is typed as \scrG<TAB>

xn = set_variables("x", numvars=1, order=10)

x = xn[1]

t = Taylor1([zero(x), one(x)], 10) # Taylor1{TaylorN{Float64}}

gf = G (x, t) # Taylor1 expansion of G

HH(n::Int) = derivative(n, gf) # n-th derivative of �gf�

HH(6)

Out[2]: - 120.0 + 720.0 x1
2 - 480.0 x1

4 + 63.99999999999999 x1
6

1

This example shows that the calculations are performed numerically and not symboli-
cally, using TaylorSeries.jl as a polynomial manipulator; this is manifested by the
fact that the last coefficient of HH(6) is not identical to an integer.

Taylor method for integrating ordinary differential equations

As a final example, we give a simple implementation of Picard iteration to integrate an
ordinary differential equation, which is equivalent to the Taylor method.

We consider the initial-value problem ẋ = x, with initial condition x(0) = 1. One step
of the integration corresponds to constructing the Taylor series of the solution x(t) in
powers of t:

In [3]:
R
_dt(u::Taylor1) = integrate(u) # the symbol

R
is obtained as \int<TAB>

function taylor_step(f, u0)

u = copy(u0)
unew = u0 +

R
_dt(f(u))

while unew != u
u = unew
unew = u0 +

R
_dt(f(u)) # Picard iteration

end

return u
end

f(x) = x # Differential equation

order = 20 # maximum order of the Taylor expansion for the solution

u0 = Taylor1([1.0], order) # initial condition given as a Taylor expansion

solution = taylor_step(f, u0); # solution

solution(1.0) - exp(1.0) # compare solution with the exact value at t=1

Out[3]: 0.0

1

Thus this Taylor expansion of order 20 around t0 = 0 suffices to obtain the exact solution
at t = 1, while the error at time t = 2 from the same expansion is 4.53 × 10−14. This
indicates that a proper treatment should estimate the size of the required step that
should be taken as a function of the solution.
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