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Summary

TensorFlow.jl is a Julia (Bezanson, Edelman, Karpinski, & Shah, 2017) client library for
the TensorFlow deep-learning framework (Abadi et al., 2015),(Abadi et al., 2016). It
allows users to define TensorFlow graphs using Julia syntax, which are interchangeable
with the graphs produced by Google’s first-party Python TensorFlow client and can be
used to perform training or inference on machine-learning models.
Graphs are primarily defined by overloading native Julia functions to operate on a Ten-
sorFlow.jl Tensor type, which represents a node in a TensorFlow computational graph.
This overloading is powered by Julia’s powerful multiple-dispatch system, which in turn
allows allows the vast majority of Julia’s existing array-processing functionality to work
as well on the new Tensor type as they do on native Julia arrays. User code is often
unaware and thereby reusable with respect to whether its inputs are TensorFlow tensors
or native Julia arrays by utilizing duck-typing.
TensorFlow.jl has an elegant, idiomatic Julia syntax. It allows all the usual infix operators
such as +, -, * etc. It works seamlessly with Julia’s broadcast syntax as well, such as
the .* operator. Thus * can correspond to matrix multiplication while .* corresponds to
element-wise multiplication, while Python clients needs distinct @ (or matmul) and * (or
multiply) functions. It also allows Julia-style indexing (e.g. x[:, ii + end÷2]), and
concatenation (e.g. [A B], [x; y; 1]). Its goal is to be idiomatic for Julia users while
still preserving all the power and maturity of the TensorFlow computational engine.
TensorFlow.jl aims to carefully balance between matching the Python TensorFlow API
and Julia conventions. In turn, the Python TensorFlow client is itself designed to closely
mirror numpy. Some examples are shown in the table below.

Julia Python TensorFlow TensorFlow.jl
1-based indexing 0-based indexing 1-based indexing
explicit
broadcasting

implicit broadcasting implicit or explicit broadcasting

last index at end,
2nd last in end-1,
etc.

last index at -1 second
last in -2

last index at end 2nd last in end-1

Operations in Julia
ecosystem
namespaces. (SVD
in LinearAlgebra,
erfc in
SpecialFunctions,
cos in Base)

All operations in
TensorFlow’s
namespaces (SVD in
tf.linalg, erfc in
tf.math, cos in
tf.math, and all
reexported from tf)

Existing Julia functions overloaded to
call TensorFlow equivalents when
called with TensorFlow arguments
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Julia Python TensorFlow TensorFlow.jl
Container types
are parametrized
by number of
dimensions and
element type

N/A: does not have a
parametric type
system

Tensors are parametrized by element
type, enabling easy specialization of
algorithms for different types.

Defining TensorFlow graphs in the Python TensorFlow client can be viewed as metapro-
gramming, in the sense that a host language (Python) is being used to generate code in a
different embedded language (the TensorFlow computational graph) (Innes et al., 2017).
This often comes with some awkwardness, as the syntax and the semantics of the embed-
ded language by definition do not match the host language or there would be no need for
two languages to begin with. Using TensorFlow.jl is similarly a form of meta-programming
for the same reason. However, the flexibility and meta-programming facilities offered by
Julia’s macro system makes Julia especially well-suited as a host language, as macros
implemented in TensorFlow.jl can syntactically transform idiomatic Julia code into Julia
code that constructs TensorFlow graphs. This permits users to reuse their knowledge of
Julia, while users of the Python TensorFlow client essentially need to learn both Python
and TensorFlow.
One example of our ability to leverage the increased expressiveness of Julia is using @tf
macro blocks implemented in TensorFlow.jl to automatically name nodes in the Tensor-
Flow computational graph. Nodes in a TensorFlow graph have names; these correspond
to variable names in a traditional programming language. Thus every operation, variable
and placeholder takes a name parameter. In most TensorFlow bindings, these must be
specified manually resulting in a lot of code that includes duplicate information such as
x = tf.placeholder(tf.float32, name="x") or they are defaulted to an uninforma-
tive value such as Placeholder_1. In TensorFlow.jl, prefixing a lexical block (such as
a function or a begin block) with the @tf macro will cause the name parameter on all
operations occurring on the right-hand side of an assignment to be filled in using the
left-hand side. For example, the TensorFlow.jl equivalent of the above example is @tf
x = placeholder(Float32). Note how x is named only once instead of twice, as is
redundantly required in the Python example. Since all nodes in the computational graph
can automatically be assigned the same name as the corresponding Julia variable with
no additional labor from TensorFlow.jl users, users get for free more intuitive debugging
and graph visualisation.
Another example of the use of Julia’s metaprogramming is in the automatic generation
of Julia code for each operation defined by the official TensorFlow C implementation
(for example, convolutions of two TensorFlow tensors). The C API can be queried to
return definitions of all operations as protocol buffer descriptions, which includes the
expected TensorFlow type and arity of its inputs and outputs, as well as documentation.
This described the operations at a sufficient level to generate the Julia code to bind
to the functions in the C API and automatically generate a useful docstring for the
function,. One challenge in this is that such generated code must correct the indices
to be 1-based instead of 0-based to accord with Julia convention. Various heuristics are
employed by TensorFlow.jl to guess which input arguments represent indices and so should
be converted.
TensorFlow.jl ships by default with bindings for most operations, but any operation can be
dynamically imported at runtime using @tfimport OperationName, which will generate
the binding and load it immediately. Additionally, for operations that correspond to
native Julia operations (for example, sin), we overload the native Julia operation to call
the proper binding.
We also use Julia’s advanced parametric type system to enable elegant implementations of
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array operations not easily possible in other client libraries. TensorFlow.jl represents all
nodes in the computational graph as parametric Tensor types which are parameterized by
their element type, e.g. Tensor{Int}, Tensor{Float64} or Tensor{Bool}. This allows
Julia’s dispatch system to be used to simplify defining some bindings. For example,
indexing a Tensor with an Int-like Tensor will ultimately create a node corresponding to
a TensorFlow “gather” operation, and indexing with a Bool-like Tensor will correspond
to a “boolean_mask” operation. It is also used to cast inputs in various functions to
compatible shapes.

Challenges

The TensorFlow 1.0 C API primarily exposes low-level functionality for manually man-
aging nodes in the computation graph. Gradient descent optimizers, RNNs functionality,
and (until recently) shape-inference all required reimplementation on the Julia side. Most
challengingly, the symbolic differentiation implemented in the gradients function is not
available from the C API for all operations. To work around this, we currently use Ju-
lia’s Python interop library to generate the gradient nodes using the Python client for
those operations not supported by the C API. This requires serializing and deserializing
TensorFlow graphs on both the Julia and Python side.
This has been improving over time, both due to Google moving more functionality from
the Python TensorFlow client to the C API which can reused by Julia, and with more
reimplementations of other aspects of the Python client from our own volunteer efforts.
There nevertheless remains a large number of components from the upstream contrib
submodule that remain unimplemented, including various efforts around probabilistic
programming.

Other deep learning frameworks in Julia

Julia also has bespoke neural network packages such as Mocha (C. Zhang, 2014), Knet
(Yuret, 2016) and Flux (Innes, 2018), as well as bindings to other frameworks such as
MxNet (T. Chen et al., 2015). While not having the full-capacity to directly leverage some
of the benefits of the language and its ecosystem present in the pure Julia frameworks such
as Flux, TensorFlow.jl provides an interface to one of the most mature and widely deployed
deep learning environments. It naturally therefore supports TensorFlow visualization
libraries like TensorBoard. It also gains the benefits from any optimisations made in the
graph execution engine of the underlying TensorFlow C library, which includes extensive
support for automatically distributing computations over multiple host machines which
each have multiple GPUs.
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