
quimb: A python package for quantum information and
many-body calculations
Johnnie Gray1

1 University College London, London, UKDOI: 10.21105/joss.00819

Software
• Review
• Repository
• Archive

Submitted: 14 June 2018
Published: 04 September 2018

License
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

The language of quantum physics is essentially linear algebra, making it easy to begin
simulating using standard numerical routines. However, the amount of classical resources
required to simulate a quantum system scales exponenially with its size. This imposes,
in the generic case, dramatic limits on the sizes reachable and requires that great care is
taken in order to maximise performance. Nonetheless, and in part due to this difficulty,
there is much to be learnt from simulating many-body quantum systems. One useful
set of tools in this case is quantum information inspired quantities such as entanglement
meausures. Entanglement is also the key quantity when formulating tensor networks, an
efficient representation of certain many-body quantum states. quimb is a pure python
library that covers all these areas, with an emphasis on being interactive and easy to use
without sacrificing performance.
The main quimb module utilizes numpy (Guide to numpy, 2015) and scipy (Jones,
Oliphant, Peterson, & others, 2001–2001--) sparse matrices to represent quantum states
and operators. Amongst other things there are tools to: (i) construct states and operators
in composite tensor spaces; (ii) generate various special or random states and operators
such as Hamiltonians; (iii) perform and compute many operations and quantities on
these states; and (iv) efficiently evolve states with a variety of methods. Much of this
core functionality is accelerated with numba or numexpr. Additionally, quimb has an
optional slepc4py (Dalcin, Paz, Kler, & Cosimo, 2011; Hernandez, Roman, & Vidal,
2005) interface for various linear algebra routines, such as eigen-decomposition. These
are accessed through unified functions so that one can easily switch between slepc4py,
scipy and other backends. When required, quimb handles spawning local mpi4py (Dalcín,
Paz, & Storti, 2005) workers automatically, but there also tools for explicitly running
under MPI, for example on a cluster. The following snippet illustrates some basic usage:
>>> import quimb as qu

>>> psi_0 = qu.rand_product_state(n=16)
>>> H = qu.ham_heis(n=16, sparse=True)

>>> evo = qu.Evolution(psi_0, H, progbar=True)
>>> evo.update_to(1)
100%|���������������������������������������| 100/100 [00:00<00:00, 292.51%/s]

>>> dims = [2] * 16
>>> sysa, sysb = [7, 8, 9], [10, 11, 12]
>>> qu.logneg_subsys(evo.pt, dims, sysa, sysb)
0.7719264840262068

The submodule quimb.tensor has a more speciliazed set of tools that focus on tensor
networks (Bridgeman & Chubb, 2017) - one of the key recent advancements in many-body

Gray, (2018). quimb: A python package for quantum information and many-body calculations. Journal of Open Source Software, 3(29), 819.
https://doi.org/10.21105/joss.00819

1

https://doi.org/10.21105/joss.00819
https://github.com/openjournals/joss-reviews/issues/819
https://github.com/jcmgray/quimb
https://doi.org/10.5281/zenodo.1408690
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00819

Figure 1: Example output of the tensor network graph plotter.

quantum theory. General highlights of quimb.tensor include: (i) an efficient, geometry
free representation of arbitrary tensor networks; (ii) automatic contraction of 100s-1000s
of tensors using opt_einsum (D. G. Smith & Gray, 2018), including on the GPU; (iii) the
ability to plot any tensor network, color-coded, with bond-sizes represented; and (iv) the
ability to treat any network as a LinearOperator, allowing many iterative decompositions
such as those in scipy. Based on these, fast versions of 1D tensor network algorithms such
as DMRG and TEBD are implemented, as well as tools for efficiently dealing with periodic
boundary conditions. The following snippet illustrates some usage of quimb.tensor:
>>> import quimb.tensor as qtn

>>> # set up a MPO Hamiltonian and DMRG object, solve it
>>> H = qtn.MPO_ham_heis(100)
>>> dmrg = qtn.DMRG2(H)
>>> dmrg.solve(max_sweeps=3, verbosity=1)
SWEEP-1, direction=R, max_bond=8, cutoff:1e-08
100%|���| 99/99 [00:02<00:00, 46.42it/s]
Energy: -43.97194198907086 ... not converged.
SWEEP-2, direction=R, max_bond=16, cutoff:1e-08
100%|��| 99/99 [00:00<00:00, 117.69it/s]
Energy: -44.111515305613054 ... not converged.
SWEEP-3, direction=R, max_bond=32, cutoff:1e-08
100%|��| 99/99 [00:00<00:00, 196.39it/s]
Energy: -44.12521153106866 ... not converged.

>>> # find the half chain entropy
>>> gs = dmrg.state
>>> gs.entropy(50)
1.2030121785347394

>>> # lazily form <psi|psi>, select 15 sites, and plot (see figure 1.)
>>> (gs.H & gs)[30:45].graph(color=['I{}'.format(i) for i in range(30, 45)])

Overall, quimb aims to be an accessible but capable approach to simulating quantum
many-body problems, and has been used already in a number of publications(Gray,
Banchi, Bayat, & Bose, 2017; Gray, Bayat, Puddy, Smith, & Bose, 2016; Gray, Bose, &
Bayat, 2018). The full documentation can be found online at http://quimb.readthedocs.
io/en/latest/.

Gray, (2018). quimb: A python package for quantum information and many-body calculations. Journal of Open Source Software, 3(29), 819.
https://doi.org/10.21105/joss.00819

2

http://quimb.readthedocs.io/en/latest/
http://quimb.readthedocs.io/en/latest/
https://doi.org/10.21105/joss.00819

Acknowledgements

JG acknowledges funding from the EPSRC Centre for Doctoral Training in Delivering
Quantum Technologies at UCL.

References

Bridgeman, J. C., & Chubb, C. T. (2017). Hand-waving and interpretive dance: An intro-
ductory course on tensor networks. Journal of Physics A: Mathematical and Theoretical,
50(22), 223001. doi:10.1088/1751-8121/aa6dc3
Dalcin, L. D., Paz, R. R., Kler, P. A., & Cosimo, A. (2011). Parallel dis-
tributed computing using python. Advances in Water Resources, 34(9), 1124–1139.
doi:10.1016/j.advwatres.2011.04.013
Dalcín, L., Paz, R., & Storti, M. (2005). MPI for python. Journal of Parallel and
Distributed Computing, 65(9), 1108–1115. doi:10.1016/j.jpdc.2005.03.010
Gray, J., Banchi, L., Bayat, A., & Bose, S. (2017). Measuring entanglement negativity.
arXiv preprint arXiv:1709.04923.
Gray, J., Bayat, A., Puddy, R. K., Smith, C. G., & Bose, S. (2016). Unravelling quantum
dot array simulators via singlet-triplet measurements. Physical Review B, 94(19), 195136.
doi:10.1103/PhysRevB.94.195136
Gray, J., Bose, S., & Bayat, A. (2018). Many-body localization transition:
Schmidt gap, entanglement length, and scaling. Physical Review B, 97(20), 201105.
doi:10.1103/PhysRevB.97.201105
Guide to numpy. (2015). (2nd ed.). USA: CreateSpace Independent Publishing Platform.
Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc: A scalable and flexible toolkit
for the solution of eigenvalue problems. ACM Transactions on Mathematical Software
(TOMS), 31(3), 351–362. doi:10.1145/1089014.1089019
Jones, E., Oliphant, T., Peterson, P., & others. (2001–2001--). SciPy: Open source
scientific tools for Python. Retrieved from http://www.scipy.org/
Smith, D. G., & Gray, J. (2018, june).Journal of Open Source Software. doi:10.21105/joss.00753

Gray, (2018). quimb: A python package for quantum information and many-body calculations. Journal of Open Source Software, 3(29), 819.
https://doi.org/10.21105/joss.00819

3

https://doi.org/10.1088/1751-8121/aa6dc3
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.jpdc.2005.03.010
https://doi.org/10.1103/PhysRevB.94.195136
https://doi.org/10.1103/PhysRevB.97.201105
https://doi.org/10.1145/1089014.1089019
http://www.scipy.org/
https://doi.org/10.21105/joss.00753
https://doi.org/10.21105/joss.00819

	Summary
	Acknowledgements
	References

