
rowan: A Python package for working with quaternions
Vyas Ramasubramani1 and Sharon C. Glotzer1, 2, 3

1 Department of Chemical Engineering, University of Michigan 2 Department of Materials Science
and Engineering, University of Michigan 3 Biointerfaces Institute, University of MichiganDOI: 10.21105/joss.00787

Software
• Review
• Repository
• Archive

Submitted: 29 May 2018
Published: 30 July 2018

License
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

Numerous fields in science and engineering require methods for rotating objects. Quater-
nions are perhaps the most popular formalism for representing spatial rotations due to
their natural parameterization of the space of rotations SO(3) and the relative efficiency
of computing quaternion-based rotation operations. A simple, uniform, and efficient im-
plementation of quaternion operations is therefore critical to developing code to solve
domain-specific problems in areas such as particle simulation and attitude determina-
tion. Python implementations of quaternion operations do exist, but they suffer from
various drawbacks. Some tools are performance limited due to, e.g., having limited or
no support for NumPy style array broadcasting (Wynn 2015, Brett and Gohlke (2009)).
Since NumPy is a de facto standard in scientific computing applications, such support is
both a prerequisite for a package to be easily incorporated into existing code bases and a
Pythonic way to achieve a performant solution. Other packages that do support NumPy
may have complex dependencies for accessing their full features or require conversion into
some internal format, making them cumbersome to incorporate into existing code bases
that need to operate on raw arrays (Boyle 2017).
The rowan package, named for William Rowan Hamilton, is a quaternion package that
addresses these issues. By operating directly on NumPy arrays and offering first-class sup-
port for broadcasting for all modules and functions in the package, rowan ensures high
efficiency for operating on the large arrays common in computer graphics or scientific ap-
plications. We quantify performance in Figure 1 by comparison to pyquaternion (Wynn
2015) and numpy-quaternion (Boyle 2017), two well-known alternatives to rowan. For
small arrays, the performance benefits of numpy-quaternion and rowan are somewhat
muted since the Python function calls dominate the total run time. In fact, at this scale
rowan performs quite similarly to pyquaternion, which is a pure Python solution, while
numpy-quaternion, a hybrid Python-C solution, performs faster than both. For large ar-
rays (e.g. N > 10000) where performance limitations become significant, however, rowan
outstrips pyquaternion by roughly two orders of magnitude and approaches the perfor-
mance of numpy-quaternion. Although a typical function call with rowan is, on average,
roughly 4 times slower than numpy-quaternion, this performance difference is offset by
rowan’s relative ease of installation and incorporation. The package avoids any hard de-
pendencies other than NumPy itself and directly uses NumPy arrays, making rowan an
unobtrusive dependency with essentially zero barrier for introduction into existing code
bases.
A full-featured quaternion library, rowan has extensive capabilities in addition to ba-
sic quaternion arithmetic operations. These functions include: methods for point set
registration, including some that are specialized for solving the Procrustes problem of
superimposing corresponding sets of points; functions for quaternion calculus and inter-
polation; the ability to sample random rotation quaternions from SO(3); and functions
to compute various distance metrics on the quaternion manifold. For applications focused
on rotations, rowan provides the ability to convert between numerous common rotation

Ramasubramani et al., (2018). rowan: A Python package for working with quaternions. Journal of Open Source Software, 3(27), 787.
https://doi.org/10.21105/joss.00787

1

https://doi.org/10.21105/joss.00787
https://github.com/openjournals/joss-reviews/issues/787
https://bitbucket.org/glotzer/rowan
https://doi.org/10.5281/zenodo.1323676
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00787


10�2 10�1 100 101 102 103

Conjugate

Exponential

Multiply

Norm

To Matrix

log 10(N) = 1

rowan

npquaternion

pyquaternion

10�2 10�1 100 101 102 103

log 10(sec)

Conjugate

Exponential

Multiply

Norm

To Matrix

log 10(N) = 5

rowan

npquaternion

pyquaternion

Figure 1: Performance Comparison

Ramasubramani et al., (2018). rowan: A Python package for working with quaternions. Journal of Open Source Software, 3(27), 787.
https://doi.org/10.21105/joss.00787

2

https://doi.org/10.21105/joss.00787


formalisms, including full support for all Euler angle conventions, which is not found in
other Python quaternion packages.
This package arose due to the need to represent anisotropic particle orientations in Monte
Carlo simulations in the Glotzer Group at the University of Michigan. Unlike configu-
rations of spherical particles, which are entirely described by their positions alone, con-
figurations of anisotropic particles also contain information on particle orientations that
change over the course of the simulation. Our simulation software HOOMD-blue (An-
derson, Lorenz, and Travesset 2008, Glaser et al. (2015)) uses quaternions to represent
particle orientations, as do many of the packages we write for analyzing these simula-
tions. Although some packages require C++ implementations, a large number are pure
Python code bases that each originally contained their own independent implementation
of quaternion operations with slightly different features and levels of generality. The
resulting code fragmentation made code maintenance much more challenging and failed
to provide a standard implementation of quaternion operations for more ad hoc analysis
tasks. rowan addressed these needs by providing a unified, high-performance, and easily
utilized solution. The package was incorporated into the open-source plato (Spellings
2018) simulation visualization tool as well as some internal packages that have not yet
been open-sourced. Going forward, rowan will not only simplify the maintenance of our
existing code bases, it will also facilitate future code development involving quaternion
operations both within and outside our group.

Acknowledgements

This work was partially supported by a Simons Investigator award from the Simons Foun-
dation to Sharon Glotzer. We would like to acknowledge Bradley D. Dice, Carl S. Adorf,
and Matthew P. Spellings for helpful suggestions and discussions during the development
of this package.

References

Anderson, Joshua A., Chris D. Lorenz, and A. Travesset. 2008. “General purpose molec-
ular dynamics simulations fully implemented on graphics processing units.” Journal of
Computational Physics 227 (10). Academic Press:5342–59. https://doi.org/10.1016/j.jcp.
2008.01.047.
Boyle, Michael. 2017. “Numpy-Quaternion.” https://github.com/moble/quaternion.
Brett, Matthew, and Christoph Gohlke. 2009. “Transforms3d.” https://github.com/
matthew-brett/transforms3d.
Glaser, Jens, Trung Dac Nguyen, Joshua A. Anderson, Pak Lui, Filippo Spiga, Jaime
A. Millan, David C. Morse, and Sharon C. Glotzer. 2015. “Strong scaling of general-
purpose molecular dynamics simulations on GPUs.” Computer Physics Communications
192 (July). North-Holland:97–107. https://doi.org/10.1016/j.cpc.2015.02.028.
Spellings, Matthew. 2018. “Plato.” https://bitbucket.org/glotzer/plato.
Wynn, Kieran. 2015. “Pyquaternion.” https://github.com/KieranWynn/pyquaternion.

Ramasubramani et al., (2018). rowan: A Python package for working with quaternions. Journal of Open Source Software, 3(27), 787.
https://doi.org/10.21105/joss.00787

3

https://doi.org/10.1016/j.jcp.2008.01.047
https://doi.org/10.1016/j.jcp.2008.01.047
https://github.com/moble/quaternion
https://github.com/matthew-brett/transforms3d
https://github.com/matthew-brett/transforms3d
https://doi.org/10.1016/j.cpc.2015.02.028
https://bitbucket.org/glotzer/plato
https://github.com/KieranWynn/pyquaternion
https://doi.org/10.21105/joss.00787

	Summary
	Acknowledgements
	References

