The Journal of Open Source Software

DOI: 10.21105/joss.00753

Software

= Review 7
= Repository &7
= Archive &

Submitted: 17 May 2018
Published: 29 June 2018

License

Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

opt_einsum - A Python package for optimizing
contraction order for einsum-like expressions

Daniel G. A. Smith! and Johnnie Gray?

1 The Molecular Science Software Institute, Blacksburg, VA 24060 2 University College London,
London, UK

Summary

einsum is a powerful Swiss army knife for arbitrary tensor contractions and general linear
algebra found in the popular numpy (Walt, Colbert, and Varoquaux 2011) package. While
these expressions can be used to form most mathematical operations found in NumPy,
the optimization of these expressions becomes increasingly important as naive implemen-
tations increase the overall scaling of these expressions resulting in a dramatic increase
in overall execution time. Expressions with many tensors are particularly prevalent in
many-body theories such as quantum chemistry, particle physics, and nuclear physics in
addition to other fields such as machine learning. At the extreme case, matrix product
state theory can have thousands of tensors meaning that the computation cannot procede
in a naive fashion.

The canonical NumPy einsum function considers expressions as a single unit and is not
able to factor these expressions into multiple smaller pieces. For example, consider the
following index transformation: M_{pqrs} = C_{pi} C_{qj} I_{ijk1} C_{rk} C_{sl}
with two different algorithms:

import numpy as np

dim = 10
I = np.random.rand(dim, dim, dim, dim)
C = np.random.rand(dim, dim)
def naive(I, C):
N78 scaling
return np.einsum('pi,qj,ijkl,rk,sl->pqrs', C, C, I, C, C)
def optimized(I, C):

N5 scaling

K = np.einsum('pi,ijkl->pjkl', C, I)
K = np.einsum('qj,pjkl->pgkl', C, K)
K = np.einsum('rk,pgkl->pgrl', C, K)
K = np.einsum('sl,pqrl->pgrs', C, K)
return K

By building intermediate arrays the overall scaling of the contraction is reduced and
considerable cost savings even for small N (N=10) can be seen:

>> np.allclose(naive(I, C), optimized(I, C))
True

%timeit naive(I, C)

Smith et al., (2018). opt_einsum -

A Python package for optimizing contraction order for einsum-like expressions. Journal of Open Source 1

Software, 3(26), 753. https://doi.org/10.21105/joss.00753

https://doi.org/10.21105/joss.00753
https://github.com/openjournals/joss-reviews/issues/753
https://github.com/dgasmith/opt_einsum
http://dx.doi.org/10.5281/zenodo.1299981
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00753

SS

The Journal of Open Source Software

1 loops, best of 3: 829 ms per loop

%timeit optimized(I, C)
1000 loops, best of 3: 445 ps per loop

This index transformation is a well known contraction that leads to straightforward inter-
mediates. This contraction can be further complicated by considering that the shape of
the C matrices need not be the same, in this case the ordering in which the indices are
transformed matters greatly. The opt_einsum package handles this logic automatically
and is a drop in replacement for the np.einsum function:

from opt_einsum import contract

dim = 30
I = np.random.rand(dim, dim, dim, dim)
C = np.random.rand(dim, dim)

%timeit optimized(I, C)
10 loops, best of 3: 65.8 ms per loop

%timeit contract('pi,qj,ijkl,rk,sl->pgrs', C, C, I, C, C)
100 loops, best of 3: 16.2 ms per loop

The above automatically will find the optimal contraction order, in this case identical to
that of the optimized function above, and computes the products. In this case, it uses
np.dot internally to exploit any vendor BLAS functionality that the NumPy build may
have.

In addition, backends other than NumPy can be used to either exploit GPU computation
via Tensorflow (Abadi et al. 2016) or distributed compute capabilities via Dask (Dask
Development Team 2016). The core components of opt_einsum have been contributed
back to the numpy library and can be found in all numpy.einsum function calls in ver-
sion 1.12 or later using the optimize keyword (https://docs.scipy.org/doc/numpy-1.14.
0/reference/generated /numpy.einsum.html).

The software is on GitHub (https://github.com/dgasmith/opt einsum/tree/v2.0.0) and

can be downloaded via pip or conda-forge. Further discussion of features and uses can be
found at the documentation (http://optimized-einsum.readthedocs.io/en/latest/).

Acknowledgements

We acknowledge additional contributions from Fabian-Robert Stoéter, Robert T. McGib-
bon, and Nils Werner to this project.

References

Abadi, Martin, Ashish Agarwal, Paul Barham, FEugene Brevdo, Zhifeng Chen, Craig
Citro, Gregory S. Corrado, et al. 2016. “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems.” CoRR abs/1603.04467. http://arxiv.org/abs/1603.
04467,

Dask Development Team. 2016. “Dask: Library for Dynamic Task Scheduling.” http:
//dask.pydata.org.

Smith et al., (2018). opt_einsum - A Python package for optimizing contraction order for einsum-like expressions. Journal of Open Source 2
Software, 3(26), 753. https://doi.org/10.21105/joss.00753

https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.einsum.html
https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.einsum.html
https://github.com/dgasmith/opt_einsum/tree/v2.0.0
http://optimized-einsum.readthedocs.io/en/latest/
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://dask.pydata.org
http://dask.pydata.org
https://doi.org/10.21105/joss.00753

The Journal of Open Source Software

Walt, S. van der, S. C. Colbert, and G. Varoquaux. 2011. “The Numpy Array: A
Structure for Efficient Numerical Computation.” Comput. Sci. Eng. 13 (2):22-30. https:
//doi.org/10.1109/MCSE.2011.37.

Smith et al., (2018). opt_einsum - A Python package for optimizing contraction order for einsum-like expressions. Journal of Open Source 3
Software, 3(26), 753. https://doi.org/10.21105/joss.00753

https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.21105/joss.00753

	Summary
	Acknowledgements
	References

