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Summary

dit(“Dit: A Python Package for Discrete Information Theory. Available at:
Https://Github.com/Dit/Dit” n.d.) is a Python package for the study of discrete
information theory. Information theory is a mathematical framework for the study of
quantifying, compressing, and communicating random variables (Cover and Thomas
2006)(MacKay 2003)(Yeung 2008). More recently, information theory has been utilized
within the physical and social sciences to quantify how different components of a system
interact. dit is primarily concerned with this aspect of the theory.
Information theory is a powerful extension to probability and statistics, quantifying de-
pendencies among arbitrary random variables in a way tha tis consistent and comparable
across systems and scales. Information theory was originally developed to quantify how
quickly and reliably information could be transmitted across an arbitrary channel. The
demands of modern, data-driven science have been coopting and extending these quanti-
ties and methods into unknown, multivariate settings where the interpretation and best
practices are not known. For example, there are at least four reasonable multivariate gen-
eralizations of the mutual information, none of which inherit all the interpretations of the
standard bivariate case. Which is best to use is context-dependent. dit implements a vast
range of multivariate information measures in an effort to allow information practitioners
to study how these various measures behave and interact in a variety of contexts. We
hope that having all these measures and techniques implemented in one place will allow
the development of robust techniques for the automated quantification of dependencies
within a system and concrete interpretation of what those dependencies mean.
dit implements the vast majority of information measure defined in the literature, includ-
ing entropies (Shannon(Cover and Thomas 2006), Renyi, Tsallis), multivariate mutual
informations (co-information(Bell 2003)(McGill 1954), total correlation(Watanabe 1960),
dual total correlation(Te Sun 1980)(Han 1975)(Abdallah and Plumbley 2012), CAEKL
mutual information(Chan et al. 2015)), common informations (Gács-Körner(Gács and
Körner 1973)(Tyagi, Narayan, and Gupta 2011), Wyner(Wyner 1975)(W. Liu, Xu, and
Chen 2010), exact(Kumar, Li, and El Gamal 2014), functional, minimal sufficient statis-
tic), and channel capacity(Cover and Thomas 2006). It includes methods of studying joint
distributions including information diagrams, connected informations(Schneidman et al.
2003)(Amari 2001), marginal utility of information(Allen, Stacey, and Bar-Yam 2017),
and the complexity profile(Y. Bar-Yam 2004). It also includes several more specialized
modules including bounds on the secret key agreement rate(Maurer and Wolf 1997), par-
tial information decomposition(Williams and Beer 2010), rate-distortion theory(Cover
and Thomas 2006) & information bottleneck(Tishby, Pereira, and Bialek 2000), and oth-
ers. Please see the dit homepage for a complete and up-to-date list.
Where possible, the implementations in dit support multivariate, conditional forms even
if not defined that way in the literature. For example, dit implements the multivariate,
conditional exact common information even though it was only defined for two variables.
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