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Summary

TSrepr (Laurinec 2018) is an R package for time series representations computing. Time
series representations are, in other words, methods for dimensionality reduction, feature
extraction or for the preprocessing of time series. They are used for (Esling and Agon
2012):

• Significant reduction of the time series dimensionality,
• Emphasis of fundamental (essential) shape characteristics,
• Implicit noise handling,
• Dimension reduction will reduce the memory requirements and computational com-

plexity of consequent machine learning methods (e.g., classification or clustering).
The TSrepr package contains various methods and types of time series representations
including the Piecewise Aggregate Approximation (PAA), the Discrete Fourier Transform
(DFT), the Perceptually Important Points (PIP), the Symbolic Aggregate approXimation
(SAX), the Piecewise Linear Approximation (PLA) and Clipping. Except for these well-
known methods, additional methods suitable for seasonal time series are implemented.
These methods are based on the model, for example multiple linear regression, robust re-
gression, generalised additive model or triple exponential smoothing (Laurinec and Lucká
2016, Laurinec et al. (2016)). Own developed feature extraction methods from the
Clipping representation are also implemented - FeaClip and FeaTrend. In Figure 1, the
comparison of all eight available model-based representations in the TSrepr on electricity
consumption time series from the randomly picked residential consumer is shown.
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Figure 1. The comparison of model-based time series representations on electricity
consumption time series. The length of representations is 48, the same as frequency of
the daily season of the used time series.
Additional useful functions and methods related to time series representations were also
implemented. The TSrepr package includes functions for normalisations and denormali-
sations of time series - z-score and min-max methods. It supports the simple computation
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of the windowing method, a matrix of representations and forecasting accuracy measures
(MAE, RMSE, MAPE, sMAPE etc.). Methods (functions) were implemented in base R
and also in C++ for fast computations. In R, C++ programmes can be written thanks
to the package Rcpp (Eddelbuettel and Francois 2011).
So far, no general package for time series representations computations has been created.
The CRAN’s time series task view proves the previous statement. Packages TSMining
(Fan 2015) and jmotif (Senin 2016) both includes implementations of PAA and SAX
time series representations methods. However, these packages are mainly focused on
motif discovery in time series.
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