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Summary

Dynamic mode decomposition (DMD) is a model reduction algorithm developed by
Schmid (Schmid 2010). Since then has emerged as a powerful tool for analyzing the
dynamics of nonlinear systems. It is used for a data-driven model simplification based on
spatiotemporal coherent structures. DMD relies only on the high-fidelity measurements,
like experimental data and numerical simulations, so it is an equation-free algorithm.
Its popularity is also due to the fact that it does not make any assumptions about the
underlying system. See (Kutz et al. 2016) for a comprehensive overview of the algorithm
and its connections to the Koopman-operator analysis, initiated in (Koopman 1931),
along with examples in computational fluid dynamics.
In the last years many variants arose, such as multiresolution DMD, compressed DMD,
forward backward DMD, and higher order DMD among others, in order to deal with noisy
data, big dataset, or spurius data for example.
In the PyDMD package (“PyDMD: Python Dynamic Mode Decomposition. Available at:
https://github.com/mathLab/PyDMD” n.d.) we implemented in Python the majority
of the variants mentioned above with a user friendly interface. We also provide many
tutorials that show all the characteristics of the software, ranging from the basic use case
to the most sofisticated one allowed by the package.
The research in the field is growing both in computational fluid dynamic and in structural
mechanics, due to the equation-free nature of the model.
As an exmaple, we show below few snapshots collected from a toy system with some noise.
The DMD is able to reconstruct the entire system evolution, filtering the noise. It is also
possible to predict the evolution of the system in the future with respect to the available
data.
Here we have the reconstruction of the dynamical system. You can observe the sensible
reduction of the noise.
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Figure 1: Snapshots

Figure 2: Reconstruction
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