
origami: A Generalized Framework for Cross-Validation
in R
Jeremy R. Coyle1 and Nima S. Hejazi1

1 Division of Biostatistics, University of California, BerkeleyDOI: 10.21105/joss.00512

Software
• Review
• Repository
• Archive

Submitted: 19 June 2017
Published: 30 January 2018

Licence
Authors of JOSS papers retain
copyright and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

Cross-validation is an essential tool for evaluating how any given data analytic procedure
extends from a sample to the target population from which the sample is derived. It
has seen widespread application in all facets of statistics, perhaps most notably statistical
machine learning. When used for model selection, cross-validation has powerful optimality
properties (van der Vaart, Dudoit, and van der Laan 2006; van der Laan, Polley, and
Hubbard 2007).
Cross-validation works by partitioning a sample into complementary subsets, applying a
particular data analytic (statistical) routine on a subset (the “training” set), and evaluat-
ing the routine of choice on the complementary subset (the “testing” set). This procedure
is repeated across multiple partitions of the data, and a variety of different partitioning
schemes exist, such as V -fold cross-validation and bootstrap cross-validation. origami,
a package for the R language for statistical computing (R Core Team 2017), supports
many of the existing cross-validation schemes, providing a suite of tools that generalize
the application of cross-validation to arbitrary data analytic procedures.

General workflow

The main function in the origami R package is cross_validate. To start off, the user
must define folds and a function that operates on each fold. Once these are passed
to cross_validate, this function will map the fold-specific function across the folds,
combining the results in a reasonable way. Specific details on each each step of this
process are given below.

(1) Define folds

The folds object passed to cross_validate is a list of folds. Such lists can be gener-
ated using the make_folds function. Each fold consists of a list with a training index
vector, a validation index vector, and a fold_index (its order in the list of folds). This
function supports a variety of cross-validation schemes including V -fold and bootstrap
cross-validation, as well as time series methods like “rolling window”. See (van der Laan,
Polley, and Hubbard 2007) for formal definitions of these schemes. make_folds can bal-
ance across levels of a variable (stratify_ids), and it can also keep all observations from
the same independent unit together (cluster). We invite interested users to consult the
documentation of the make_folds function for further details.

Coyle et al., (2018). origami: A Generalized Framework for Cross-Validation in R. Journal of Open Source Software, 3(21), 512.
https://doi.org/10.21105/joss.00512

1

https://doi.org/10.21105/joss.00512
https://github.com/openjournals/joss-reviews/issues/512
https://github.com/jeremyrcoyle/origami
http://dx.doi.org/10.5281/zenodo.1155901
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.00512


(2) Define fold function

The cv_fun argument to cross_validate is a function that will perform some operation
on each fold. The first argument to this function must be fold, which will receive an
individual fold object to operate on. Additional arguments can be passed to cv_fun using
the ... argument to cross_validate. Within this function, the convenience functions
training, validation and fold_index can return the various components of a fold
object. If training or validation is passed an object, it will index into it in a sensible
way. For instance, if it is a vector, it will index the vector directly. If it is a data.frame
or matrix, it will index rows. This allows the user to easily partition data into training
and validation sets. This fold function must return a named list of results containing
whatever fold-specific outputs are generated.

(3) Apply cross-validate

After defining folds, cross_validate can be used to map the cv_fun across the folds
using future_lapply. This means that it can be easily parallelized by specifying a
parallelization scheme (i.e., a plan). See the future package for further details.
The application of cross_validate generates a list of results. As described above, each
call to cv_fun itself returns a list of results, with different elements for each type of result
we care about. The main loop generates a list of these individual lists of results (a sort
of “meta-list”). This “meta-list” is then inverted such that there is one element per result
type (this too is a list of the results for each fold). By default, combine_results is used
to combine these results type lists in a sensible manner. How results are combined is
determined automatically by examining the data types of the results from the first fold.
This can be modified by specifying a list of arguments to .combine_control. See the
help for combine_results for more details. In most cases, the defaults should suffice.

Coyle et al., (2018). origami: A Generalized Framework for Cross-Validation in R. Journal of Open Source Software, 3(21), 512.
https://doi.org/10.21105/joss.00512

2

https://github.com/HenrikBengtsson/future
https://doi.org/10.21105/joss.00512


References

R Core Team. 2017. R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
van der Laan, M.J., E.C. Polley, and A.E. Hubbard. 2007. “Super learner.” Statistical
Applications in Genetics and Molecular Biology 6:Art. 25–23 pp. (electronic).
van der Vaart, A.W., S. Dudoit, and M.J. van der Laan. 2006. “Oracle inequalities for
multi-fold cross validation.” Statistics & Decisions 24 (3):351–71.

Coyle et al., (2018). origami: A Generalized Framework for Cross-Validation in R. Journal of Open Source Software, 3(21), 512.
https://doi.org/10.21105/joss.00512

3

https://www.R-project.org/
https://doi.org/10.21105/joss.00512

	Summary
	General workflow
	(1) Define folds
	(2) Define fold function
	(3) Apply cross-validate

	References

