
MNELAB: a graphical user interface for MNE-Python
Clemens Brunner 1

1 Institute of Psychology, Educational Neuroscience, University of Graz, Austria
DOI: 10.21105/joss.04650

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @vahid-sb
• @tuliofalmeida

Submitted: 19 July 2022
Published: 10 October 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
MNELAB is a graphical user interface (GUI) for MNE-Python (Gramfort et al., 2013), which
is currently the most popular Python package for analyzing human neurophysiological data
including EEG (electroencephalography), MEG (magnetoencephalography), ECoG (electrocor-
ticography), and NIRS (near-infrared spectroscopy). Although MNE-Python has been actively
maintained for over 11 years (with its first stable release published in March 2022), the only
way to interact with the package is still exclusively through Python code.

Statement of need
Of course, writing code to analyze data has several key advantages (such as reproducibility and
straightforward generalization to new data sets), but a GUI is better suited for a few specific
use cases.

First, getting a quick overview of a given data set is often faster with MNELAB. The file can
simply be dragged onto the main window, which will automatically import the data. MNELAB
displays important properties of the data set, such as the number and types of channels, the
total duration of the signals, the sampling frequency, its size in memory and on disk, and so
on. Generating a time series plot or calculating the power spectral density for interactive data
inspection is also only a mouse click away. Figure 1 shows the MNELAB main window (top
left), a tree view listing metadata (bottom left), and raw EEG traces in an interactive signal
browser (right).

In contrast, the same analysis in the interactive Python interpreter (without a GUI) involves
(1) specifying the full path of the file (or setting the working directory appropriately), (2)
importing MNE-Python, (3) reading the file with a suitable reader function, (4) printing the
properties of interest, and (5) generating plots with corresponding methods. The following
example shows what these steps might look like:

import mne

raw = mne.io.read_raw(”/path/to/data.edf”)

print(raw.info)

raw.plot()

raw.plot_psd()

Brunner. (2022). MNELAB: a graphical user interface for MNE-Python. Journal of Open Source Software, 7(78), 4650. https://doi.org/10.21105/
joss.04650.

1

https://orcid.org/0000-0002-6030-2233
https://doi.org/10.21105/joss.04650
https://github.com/openjournals/joss-reviews/issues/4650
https://github.com/cbrnr/mnelab
https://doi.org/10.5281/zenodo.7162311
https://kevinmoerman.org
https://orcid.org/0000-0003-3768-4269
https://github.com/vahid-sb
https://github.com/tuliofalmeida
https://creativecommons.org/licenses/by/4.0/
https://github.com/cbrnr/mnelab
https://mne.tools/stable/index.html
https://doi.org/10.21105/joss.04650
https://doi.org/10.21105/joss.04650


Figure 1: Main window (top left), metadata dialog (bottom left), and a signal browser window (right).

This code snippet also illustrates the second major use case for MNELAB. Users without a
strong programming background in Python might find it difficult to implement these steps
on their own. In fact, at least basic knowledge of MNE-Python and its underlying design
principles is required to find the right functions and methods. Conversely, MNELAB can be
used by complete novices, because available functions are explicitly exposed as menu items.
By simply exploring the user interface, it is straightforward to perform basic analysis tasks
without having to write a single line of code.

Importantly, the goal of MNELAB is not to replace MNE-Python, but rather to supplement it
and offer an alternative way of interaction for specific use cases. Indeed, one of its central
features is the command history, which records all actions performed in MNELAB and translates
them to valid Python code. This makes it easy to discover which functions correspond to
previous actions, which might help speed up the process of learning MNE-Python.

MNELAB offers extensive support for the XDF file format, which is commonly used for recording
multimodal data streams with a single synchronized time basis. MNELAB supports importing
and automatic resampling of an arbitrary number of XDF streams (including marker streams),
which is currently not easily possible with plain MNE-Python. Once an XDF file has been
imported, all associated meta data is available in a tree-like view. In addition, raw chunk
data contained in XDF files can be inspected (without importing), which is useful to detect
corruptions or other problems associated with a particular file.

Once a data set has been imported (and possibly edited in subsequent steps), MNELAB
supports exporting to various formats, including FIF, EDF, EEGLAB, and BrainVision. Other
data structures such as events, annotations, and bad channels can also be saved to disk.

Currently, MNELAB includes only a relatively small subset of functionality available in MNE-
Python. However, a basic EEG analysis workflow involving data inspection, artifact rejection,
editing events and annotations, simple ERP (event-related potentials) analysis, ERSP (event-
related spectral perturbation) also known as ERD/ERS (event-related desynchronization/syn-
chronization) analysis, ICA (independent component analysis), and more is already supported.
Depending on the availability and time of contributors, more features are planned and will be
added in the future.

Brunner. (2022). MNELAB: a graphical user interface for MNE-Python. Journal of Open Source Software, 7(78), 4650. https://doi.org/10.21105/
joss.04650.

2

https://github.com/sccn/xdf/wiki/Specifications
https://www.edfplus.info/
https://doi.org/10.21105/joss.04650
https://doi.org/10.21105/joss.04650


MNELAB is neither the first nor the only GUI to facilitate EEG/MEG analysis. In fact, EEGLAB
(Delorme & Makeig, 2004) and Brainstorm (Tadel et al., 2011) have been extremely popular
(and continue to be actively developed and maintained) in the neuroscience community for quite
some time. Another popular tool for EEG/MEG analysis is FieldTrip (Oostenveld et al., 2011),
although it does not feature a GUI. However, all three packages are MATLAB-based toolboxes,
which means that they require a proprietary (and expensive) development environment to work.
In contrast, both MNELAB and MNE-Python are based on Python, which itself is completely
open source and available for many different platforms.

Acknowledgments
A big thank you goes out to all contributors who have fixed bugs or implemented new
functionality. As with almost any open source project, new contributions are always welcome!

References
Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-

trial EEG dynamics including independent component analysis. Journal of Neuroscience
Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Goj,
R., Jas, M., Brooks, T., Parkkonen, L., & Hämäläinen, M. (2013). MEG and EEG data
analysis with MNE-Python. Frontiers in Neuroscience, 7, 267. https://doi.org/10.3389/
fnins.2013.00267

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: open source software
for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational
Intelligence and Neuroscience, 2011, 156869. https://doi.org/10.1155/2011/156869

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: a user-
friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience,
2011, 879716. https://doi.org/10.1155/2011/879716

Brunner. (2022). MNELAB: a graphical user interface for MNE-Python. Journal of Open Source Software, 7(78), 4650. https://doi.org/10.21105/
joss.04650.

3

https://eeglab.org/
https://neuroimage.usc.edu/brainstorm/Introduction
https://www.fieldtriptoolbox.org/
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/879716
https://doi.org/10.21105/joss.04650
https://doi.org/10.21105/joss.04650

	Summary
	Statement of need
	Acknowledgments
	References

